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Abstract

Designers and engineers are often confronted with problems that involve a large number of pa-
rameters, contradicting objectives and a set of various constraints. Finding solutions in this high-
dimensional setting that need to live up to certain requirements is a time-consuming procedure.
In this thesis a deep learning concept is proposed which enables the reversal of this process by
learning the underlying relationship of input parameters and performance attributes. This em-
powers the user to request a set of attributes and generate various design instances meeting those
requirements. The model augments the users ability to efficiently explore the solution space of
the given design problem. In order to achieve this objective, a Conditional Variational Autoen-
coder is employed. This concept is demonstrated on the generation of acoustic panel designs based
on requested performance attributes that describe geometrical and functional properties of the
panels. Additionally, an analysis framework is developed, enabling the model to evaluate its own
performance by estimating the attributes of the generated panels. The models performance is
enhanced by implementing a multitude of transformations and enriching the dataset with supple-
mentary data representations. In order to enable an accurate and diverse generation of conditioned
acoustic panels, a novel method that encourages the model to decouple the latent space from the
conditionality is developed. Lastly, a use case is presented guiding the reader through a practical
application of the generative model.
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Chapter 1

Introduction

1.1 Motivation
Designers and engineers are often confronted with problems that involve a large number of pa-
rameters, contradicting objectives, and a set of various constraints, resulting in a complex solution
space. Generally, a top-down approach is applied and the problem is simplified by initially devel-
oping an abstract concept and then gradually refining it until a solution is reached. This process is
guided by experience and intuition, and is regarded as a core trait of respected designers, architects
and engineers. It has enabled and contributed to countless solved design problems and realized
projects. However, this approach also leaves potential unexplored, as the designer is subconsciously
biased towards a set of possible solutions originating from the same initial intention, where the
extent of the true solution space remains largely unknown. Some design problems are simply too
complex to be fully explored, making this top-down approach a necessity. In this thesis, a concept
is presented that at its core challenges this assumption, by striving to augment the designer’s ex-
ploration capabilities and reversing the traditional design process.

1.2 Proposed Solution
The proposed solution is limited to input-output design processes, as it is dependent on a dataset
representative of the design instance and its performance. The classic example is a parametric
design process.Traditionally, it follows the pattern of defining input parameters, modeling a design
instance and evaluating its performance, based on a set of pre-defined performance attributes.
Examples for these attributes include structural properties, used material, total cost, or any other
attribute that is quantifiable and relevant to the design task. In the case of conditional design
problems, where specific requirements need to be fulfilled, the traditional process demands the de-
signer to iterate over the described procedure and continuously adjust the input parameters until
a respectable performance is achieved. Not only is this time-consuming and cumbersome, it is also
likely that potential solutions remain unexplored.

Figure 1.1: Traditional and proposed parametric design processes.
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2 1.3. Application

A deep learning concept is proposed that enables to reverse this process by learning the underlying
relationship of input parameters and performance, empowering the user to generate a set of design
instances fulfilling the required attributes and properties (figure 1.1). This bottom-up approach
reduces the designers bias and allows for an efficient and more inclusive solution space exploration.
The deep learning concept employed in this thesis is called Conditional Variational Autoencoder.
It operates by compressing the input parameters into a regularized and low-dimensional latent
space, encoding the inputs most important patterns and properties. This process is carried out
by a network called the encoder. Conversely, a neural network called the decoder maps this latent
space vector back to its original form, reconstructing its input. The model learns by comparing the
original input with its reconstruction, adjusting the own parameters accordingly. Once the model
is trained, it can sample from the probabilistic latent space and forward it through the generative
model, the decoder. The output of this process is a novel design instance. At this point, the user
has no control over this process, as the sampling and the generative model do not require any
external inputs. By appending a conditionality to the latent vector, which usually is equivalent to
the pre-defined performance attributes, the model additionally develops an understanding of the
interconnected relation of the input and its respective performance. This imposed conditionality
can be utilized to control the properties of the generated design. The user specifies the desired
attributes and the model samples any number of designs from its latent space, meeting those re-
quirements. For any given conditionality, the latent space fundamentally is the representation of
the solution space, that is being interpreted by the decoder to produce diverse solutions once it
has been substantiated (or sampled). Additionally, the model is encouraged to develop an analysis
pipeline, enabling it to estimate the performance attributes of a given design instance. This allows
the model to close the loop and evaluate its own performance of generating conditioned design
instances.

1.3 Application
In this thesis, the CVAE concept is applied on the subject of acoustic panel generation. Acoustic
panels absorb the energy of soundwaves in a thermodynamic transfer. They are used in concert
halls, churches, restaurants, studios or in acoustic laboratories and have different requirements
for each of those settings. We are provided with data representations of acoustic panels and the
corresponding performance attributes. Based on this dataset, the CVAE model should ultimately
be able to generate novel designs subject to a set of performance attributes and evaluate its own
performance. As a guidance in the development process, a hypothesis is posed that states the
expected requirements for the model to reach the objective.

• Hypothesis - Requirements for a functional acoustic panel generating model, conditioned
on performance attributes:

1. The model is capable of compressing a given acoustic panel and reconstruct it accurately.
2. The model is able to accurately estimate the performance attributes of a given acoustic

panel.
3. The model maintains a regularized latent space.



Chapter 2

Related Work

The field of generative models is dynamic and rapidly evolving. Especially variational autoen-
coders (VAE) and generative adversarial network’s (GAN’s) have become popular concepts that
are utilized for bayesian inference [12], image generation [2] or language processing [14] to name
a few. Radford et. al. [11] provide a conclusive overview of the potential of GAN’s in the field
of supervised and unsupervised learning, whereas Oh et. al. [10] apply GAN’s for design opti-
mization and exploration. The theoretical ground-work of variational autoencoders is provided by
Kingma et. al. [7] and Doersch et. al. [4], among others. Vahdat et. al. [13] propose advances
in the architecture of the classical VAE in order to generate high-quality images and close the gap
to GAN’s, that are currently outperforming VAE’s in this field. Most of the work that has been
done on generative models is performed on open-source datasets and there seems to be untapped
potential of actively employing these concepts on practical applications.

The main foundational building block for this thesis is provided by Salamanca et. al. with the
work of Augmented Intelligence for Architectural Design with Conditional Autoencoders: Semi-
ramis case study [9], where a machine learning model is developed that enhance architect’s design
experience. More specifically, a conditional autoencoder is proposed that reverses the parametric
modeling process and allows the architect to define desired properties and obtain multiple design
instances that fulfill them. As some of the proposed solutions have not been thought of before, it
is an augmentation of human’s understanding of the design task and aims at stimulating design
exploration. The concept was applied on a vertical garden architectural project that was carried
out in Zug, Switzerland in 2022. This thesis is a continuation of that work, with advancements in
the models architecture by introducing variationality and a probabilistic latent space, generalizing
the proposed approach. Additionally, a convolutional neural network is embedded, allowing the
processing of images and alleviating the dependency on a classical parametric input structure,
opening up a new dimension of potential applications. One of the main objectives is to validate
the concept on a new and fundamentally different use case. Realizing a functional conditional vari-
ational autoencoder in the domain of acoustic panel generation would further solidify the already
achieved accomplishments with the proposed concept.
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Chapter 3

Methods

This thesis is conducted in a Renku limited environment with version 0.12.16. Renku describes
itself as a platform that bundles together various tools for reproducible and collaborative data
analysis projects. It is developed and maintained by the SDSC ETH. All computations have been
carried out with the following system requirements:

• Python 3.7.6

• CPU: Intel Xeon Gold 6130 CPU @ 2.10GHz

• GPU: Tesla P100-PCIE-12GB

• RAM: 32GB

The code is based on a pytorch lightning infrastructure. There are three main components to it, the
data module, the model and the lightning trainer. This structured approach allows a streamlined
process and a simple implementation of wrappers, callbacks, and plug-ins. In this thesis, we make
extensive use of the Weights and Biases logger, which allows to document and visualize the model
evolution in the Weights and Biases dashboard. The high level structure of the code is shown in
listing 3.1.

Listing 3.1: High-level code structure.
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from classes import DataModel, Model

# define config with default parameters
config = default()

# load and preprocess data
data_module = DataModel(config)

# build cvae model
cvae_model = Model(config)

# initialize wandb logger
wandb_logger = WandbLogger()

# initialize trainer with data_module, cvae_model and wandb_logger
trainer = pl.Trainer(

model=cvae_model,
datamodule=data_module,
logger=wandb_logger
)

# fit model to data and visualize performance in wandb dashboard
trainer.fit()

4



Chapter 3. Methods 5

3.1 Dataset
The dataset consists of eighty-three .pkl files, each taking up 50KB of storage in its original form.
Combined they contain approximately 40’000 samples. A sample includes an image array of a
sound panel, as well as thirty-one attributes that correspond to the given panel, packed in a
pandas dataframe.

3.1.1 Performance Attributes
The performance attributes quantify the performance or fitness of a sound panel given the problem
statement of the design assignment. Quantifiability and relevancy to the task at hand are require-
ments in order to be regarded as a performance attribute. In this dataset, thirty-one attributes and
therefore thirty-one potential performance attributes are provided. The performance attributes are
defined by the designer, by taking into account what the most critical aspects of the design prob-
lem are and how well the given attributes reflect them. Exploring the aspects of the task that are
not as approachable to the designer and filling that void with the performance attributes is at the
core of true augmentation. Ultimately, the objective of this exercise is to empower the designer’s
abilities in solving the design task.
In this thesis, the final set of performance attributes should enable the designer to control the panel
generation in a multitude of ways with a manageable number of parameters. Obviously, the actual
performance needs to be captured, but it is just as valuable to represent certain characteristics
that do not translate to classical quantifiable metrics, but rather to subjective features such as
shape or texture. Having a high-dimensional solution space is where the designer initially started,
so that is to be avoided. For this thesis, the performance attributes are selected as follows:

• fft mean x

• fft mean y

• fft mean

• panel height

• high res x

• high res y

The fft parameters are regarded as the most important attributes, since the purpose of a sound
panel is to modify sound waves, which is described by the fft values. The panel height is a very
crucial parameter in its own right, as the height dimension often is a hard constraint and important
to have control over. The two high res attributes describe geometrical characteristics of the panel
in the x and y directions. They enable the designer to enforce structural preferences on the panel
generation. If this set of performance attributes can be learned well by the model, it enables
the designer to impose diverse constraints on the generational model and guide the sound panel
generation process accordingly. The performance attributes are referred to as x.

3.1.2 Panels
The panels are packed in the form of a numpy array with an initial dimension of

init_dim “ p600, 600q. (3.1)
They are single-channel or greyscale images with datatype uint8, a discrete integer value range
of r0, 255s. The pixel value is equivalent to the z coordinate of the sound panel at the given
location, encoding the topology of the panel. These types of 2d images are also referred to as
heatmaps. In order to get the images compatible with a deep learning network, the data needs to
be transformed into a continuous datatype. Since uint8 images are taking up only a fraction of the
memory compared to i.e. float64, it is important to be conscious of memory usage going forward.



6 3.1. Dataset

Figure 3.1: Original panel with 600 x 600 pixels.

The panels contain 3601000 datapoints each, which leads to large data batches. Therefore, the
panels are transformed in order to make them more manageable. The x and y axis are evenly split
into three sections, creating a grid of nine sub-images. From this new set of patched images, two of
the sub-images are randomly selected and added to a new dataset. There is a specific reason why
it is not trivial to add any arbitrary number of sub-panels to the new dataset, apart from memory
concerns. The sub-panels share the same set of performance attributes, which are expected to be
of continuous nature. Having multiple of instances in a dataset with exactly the same values goes
against the expectation of continuous scales and might negatively impact the behaviour of the
deep learning model. On the contrary, it is beneficial to increase the dataset as long as the data is
meaningful and representative. Considering these factors, down-sampling to two sub-images from
each original panel is reasonable and effectively doubles the number of samples in the dataset.

Figure 3.2: Random sampling of sub-panels from original panel.

There are some assumptions made and uncertainties taken into account during this process. It
is not clear that the sub-panels still have the same impact on sound waves as their performance
attributes would suggest, leaving open the possibility of having an inaccurate dataset. Since this
inaccuracy is likely to be insignificant and down-sampling the images to some degree is necessary
due to memory usage, it is justifiable to regard the performance attributes of the down-sampled
panels as valid. There is one attribute where this small inaccuracy can be resolved, as the panel
height parameter corresponds to the largest pixel value in the image array. Therefore, the new
panel height performance attribute is set as

panel_heightnew “ maxpsub_panelq. (3.2)
In a mathematical context, the sub-panels are referred to as w from here on. Figure 3.3 visual-
izes the translation of w to a 3d environment and helps to build an intuition regarding the 2d
representations of the sound panels.
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Figure 3.3: 2d sound panel (left) and 3d model of sound panel (right).

3.1.3 Preprocessing and Analysis

In order to stabilize and accelerate the computational procedure of the deep learning model, the
data is transformed and normalized as shown in table 3.1.

variable normalized range initial dtype new dtype
w r´1, 1s uint8 float32
x r0, 1s float64 float32

Table 3.1: Data preprocessing.

Once the data is preprocessed, it is split into a train, validation and test subset. The validation
set is examining whether the model is overfitting the training data and the test set is used for a
final evaluation, testing if the hyperparameter tuning is leading to an overfit of the validation set.
The data is split relative to the full dataset size as detailed in table 3.2.

subset relative share
train 0.8
validation 0.1
test 0.1

Table 3.2: Dataset split.

After transforming the panels and defining the performance attributes, the distribution of the
performance attributes x within the dataset is investigated. Additionally, it is important to build
an understanding of how x correlates with the topology of w. In figure 3.4, a histogram of the fft
mean and high res performance attributes is plotted relative to their respective normalized value.
The full set of histogram for all performance attributes is displayed in the appendix in figure A.13.
The dashed, red lines indicate the 0.1 respectively 0.9 values of its cumulative distribution. This
gives some additional intuition in understanding the histogram plot of x and its distribution in the
dataset.
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Figure 3.4: Distribution of the normalized performance attributes.

When examining the plots, the distribution of the fft mean attribute is resembling a gamma
distribution, heavily shifted towards its zero point. The 0.9 border lines of the respective cumulative
distribution F is well below x “ 0.3, which also can be expressed as Ffft_meanp0.3q ą 0.9. The
fft mean x and fft mean y attributes are distributed similarly. This means that for a large part
of the fft attribute ranges, very little data is available. The high res y attribute, is linearly
distributed without any significant outliers. The full x data range r0, 1s is represented fairly well.
The distribution of the high res x attribute has the same properties except for a flipped slope, as
displayed in figure A.13. This can be explained by the fact that high res y is always larger than
high res x, or

xhigh_res_x,i ă xhigh_res_y,i@i. (3.3)

As a result of equation (3.3) the panels are always oriented in the same direction. The panel height
histogram plot shown in the appendix suggests that the panels are likely generated from a discrete
set of values, as implied by the frequent spikes in the distribution. A large portion of the panels
are at maximum height, considering the large spike at x “ 1. Fortunately, the gaps between the
various spikes are filled to some degree due to the reassignment of the new panel height detailed
in equation (3.2), since not all sub-panels share the same height the original panel was generated
with. This introduces some continuity into the distribution and dampens its discrete character.

(a) fft mean

(b) high res y

Figure 3.5: Panel topography relative to the performance attribute distribution.

Figure 3.5 demonstrates the panels topology transition relative to the performance attribute dis-
tribution. A selection of panels is plotted that correspond to the evenly spaced values throughout
the distribution of a given performance attribute. For consistency, the panels of the attributes fft
mean and high res y are examined. The full set of figures is shown in figure A.14. The fft mean at-
tribute has an easily identifiable effect on the panels topology, resulting in fragmented panels when
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approaching the x “ 1 boundary. As for the high res y attribute, the geometrical characteristics
that are imposed on the panels are best examined by comparing the two boundaries. Apparently
the high res y attribute regulates the gradients of an image array in the y direction. As evident
in the appendix figure A.14, the same properties that are observed in figure 3.5, are translated to
fft mean x, fft mean y and high res x as expected. There are no takeaways from the panel height
images, since the color mapping of each plot is scaled accordingly to its relative value range. In
figure 3.6, the fft and high res edge cases are translated to a 3d environment. It is evident that
the large gradients of these sound panels are not desirable and will be regarded as infeasible.

Figure 3.6: Example of potentially infeasible sound panels

In order to address the issues that have been raised, a clamping of the dataset is introduced. There
are two main problems that are being confronted with the clamping:

• removing outliers

• removing infeasible sound panels

As detailed in table 3.3, all samples with fft mean attribute values above 90% of the corresponding
distribution are clamped, as well as all samples with high res y attribute values below 10% of the
distribution. After the clamping, the performance attributes are being re-normalized.

performance attr lower bound upper bound
fft mean x 0 0.9
fft mean y 0 0.9
fft mean 0 0.9
panel height 0 1
high res x 0.1 1
high res y 0.1 1

Table 3.3: Clamping of dataset.

There are negative effects of this clamping procedure, with the first one being that the size of the
dataset is reduced by approximately 25%. Secondly, the model needs to be more precise in order
to reach the same level of relative performance as the normalization has spread out panels with
attributes that used to be regarded as similar. This effect is only due to the scaling of the relative
errors and has no actual impact on performance, but it is noteworthy that the model is likely to
have reduced losses on the original dataset, assuming normalization.
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3.1.4 Final Dataset
The final dataset contains a total of 611050 samples. In order to validate the procedures from the
previous section, the performance attribute density and the corresponding sound panel plots are
compared with the ones from figure 3.4. As can be seen in figure 3.7, the plots show a better data
representation over the full r0, 1s range for the fft mean values and the extreme outliers are no
longer present. The complete set of histogram plots is documented in figure A.15 of the appendix.

Figure 3.7: Clamped histogram plots of fft mean and high res y attributes.

For the second objective of the clamping procedure, the sound panel topology transitions shown
in figure 3.8 are inspected. The edge case panels are not as extremely fragmented as before the
clamping for the fft mean panels and the high res y seem more manageable as well. Although
they still show some of the same characteristic, these sound panels are assumed to be feasible.
The complete set of topology transitions is documented in figure A.16 of the appendix. This last
validation concludes the dataset evaluation and the focus shifts toward the neural network model.

(a) fft mean

(b) high res y

Figure 3.8: Panel topography plots of clamped fft mean and high res y attributes.
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3.2 Conditional Variational Autoencoder

A Conditional Variational Autoencoder is based on the concept of an autoencoder, as shown in
figure 3.9. A classic autoencoder consists of two neural networks, an encoder qppp.qqq and a decoder
pppp.qqq. The encoder compresses the input into the latent space vector z, or z “““ qpppinputqqq. Gener-
ally, the input is high-dimensional and the latent vector z low-dimensional, but z should still be
representative of the input. The latent space z is also referred to as the bottleneck. The decoder
takes z as input and expands it back to its original size, output “““ ppppqpppinputqqqqqq. The performance
is typically measured by computing the reconstruction error |||input ´́́ output|||.

Figure 3.9: Autoencoder.

There are limitations to the classical autoencoder concept. It is not trivial to use it as a generative
model, since its latent space is unregulated. This can lead to blindspots within the latent space
that produce strange outputs with bad performance. Additionally, it is not possible to request a
specific type of generated output, since there is no conditionality included. It is predominantly
used in settings where it does not need to generate a new design or object. Classical use-cases
include de-noising or imputing images, among others [1]. On the other hand, the variational
autoencoder model is specifically designed to take on generative design tasks. It deals with the
autoencoder’s shortcomings by introducing a regulated, probabilistic latent space. This produces a
smooth transition between slight adjustments in the latent space and generated designs, eliminating
the blind spots. However, the probabilistic nature of the model introduces new challenges as well.
Stochastic nodes prohibit gradient computation and therefore backpropagation, which is a the
core process of a neural network such as the autoencoder. In order to enable backpropagation,
a new method called the reparametrization trick is employed [7]. The idea is to express the
probabilistic variable z as a deterministic variable. This is achieved by introducing an auxiliary
variable ε, allowing to redefine the probabilistic latent space variable z as

z “ µ` σ ˚ ε,

ε „ N p0, 1q.
(3.4)

The mean µ and the standard deviation σ are neurons in the final layer of the encoder. With
the reparametrization trick, z has successfully been reformulated as a differentiable variable while
maintaining its probabilistic character. ε allows the generation of any arbitrary number of novel
designs, by sampling the latent space and passing it to the generative model, the decoder.
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Figure 3.10: Conditional Variational Autoencoder.

In order to introduce conditionality to the model, the vector c is simply being appended to the
latent space z. This small modification enables the decoder to generate designs that are conditioned
on c, which is one of the core objectives of this thesis. The model is no longer encouraged to encode
information of c and as a consequence the latent space is detaching from c specific characteristics,
enabling it to focus on the solution variability within the space of c. To enhance this welcomed
effect, the c vector is additionally appended to the input as shown in figure 3.10.

Objective Function

The objective function of the conditional variational autoencoder is given in [12] as:

log ppw|xq ´DKLrqpz|w, xq||ppz|w, xqs “ Erlog ppw|z, xqs ´DKLrqpz|w, xq||ppzqs, (3.5)

where ppppw|||xqqq is the dataset, DKL is the KL-divergence, qpppz|||w,xqqq is the approximated posterior,
ppppz|||w,xqqq is the true posterior, ppppw|||z, xqqq is the likelihood and ppppzqqq is the prior. As evident in
equation (3.5), all of the terms are conditioned on the performance attributes x, except for the
prior. The true posterior ppppz|||w,xqqq is generally intractable, so the objective function needs to be
reformulated before it can be applied in a real-world scenario.

CVAE Loss

This is where the CVAE loss or evidence lower bound (ELBO) comes into play. It is a reformulation
of equation (3.5) that eliminates the true posterior from the equation and can directly be expressed
as a loss function:

ELBO “ minpEqrlog qpz|w, xq ´ log ppzqs ´ Eq log ppw|z, xqq, (3.6)

where ELBO is to be minimized. The first term of the RHS is the KL loss and the second term
is simply the log likelihood or in more general terms the reconstruction loss. The variables
can be expressed in terms of the CVAE model in figure 3.10, where qpppz|||w,xqqq and ppppw|||z, xqqq
represent the encoder and decoder respectively. Initially, z is sampled from qpppz|||w,xqqq, the encoder.
Subsequently, the KL divergence of qpppz|||w,xqqq and the prior ppppzqqq is computed, as well as the log
likelihood or logppppw|||z, xqqq, which is given by the generative model, the decoder. The log likelihood
is analogous to the density of data point wi under the generative model, given zi and xi. The
prior can take the form of any desired distribution and acts as the regularization term in the
VAE loss 3.6. In this thesis, it is modeled as

ppzq „ N p0, 1q, (3.7)

therefore encouraging qpppz|||w,xqqq to be distributed as a multivariate standard Gaussian. Since the
KL divergence is carried out on an element basis and computed for each input wi separately, it is
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not desirable to fully minimize the KL loss. A KL loss of zero is equivalent to an encoder qpppz|||w,xqqq
that is independent ofw and x, being identical to the prior and producing fully generalized samples.
On the contrary, the model will behave similarly to a regular Autoencoder if no KL loss is enforced.
The standard deviation parameters of the latent space distribution qpppz|||w,xqqq for a given input w
will be vanishingly small, effectively eliminating the encoder’s probabilistic nature.

Figure 3.11: Visualized latent space with KL divergence loss ignored (left) and enforced (right).

Figure 3.11 demonstrates this phenomenon, where the upper plots display the distribution of the µ
and σ parameters of qpppz|||w,xqqq and the lower plots show the approximated resulting latent space
distribution for each zj separately. On the two left plots, it can be observed that the standard
deviation parameter σ for a single sample are virtually zero, while µ is unconstrained. On the
right plots, it is evident that µ and σ are regularized by the prior, resulting in a latent space
distribution resembling the standard Gaussian. The approximated latent space distribution is
produced by forwarding all train samples through the model and registering the distribution of
each zj . These distributions are averaged out, resulting in an estimate of the true latent space of
the model as described in equation (3.8).

qpzj |w, xqtrue »
1
n

n´1
ÿ

i“0
qpzj |wi, xiq, @j. (3.8)
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3.3 Model Architecture
In this thesis, the CVAE model introduced in section 3.2 is employed to take on the challenge of
generating sound panels conditioned on performance attributes. As the sound panels are described
in the form of 2D gray-scale images, the model architecture consists of Convolutional Neural
Networks’s (cnn) in combination with fully-connected Feed-Forward Network’s (ffn) to encode and
decode the panels and attributes. A forward pass through the encoder and decoder is described as
follows:

1. Encoder - qpppz|||w,xqqq

(a) wz Ð qcnnpwz|wq

(b) µz, σz Ð qffnpz|wz,xq

(c) z “ µz ` ε ˚ σz, where εÐ N p0, 1qq

2. Decoder - ppppŵ|||z, xqqq

(a) zw Ð pffnpzw|z,xq

(b) ŵ Ð pcnnpŵ|zwq

This network is visualized in figure 3.12.

Figure 3.12: CVAE detailed architecture.

3.3.1 Attribute Reconstruction
In order to evaluate the performance of the CVAE model in generating sound panels conditioned
on a set of performance attributes, a measuring tool is needed. Unfortunately, we do not have
access to the analysis process that computes the true performance attributes given a 2D mapping
of a sound panel. Therefore, a process that approximates the true attributes given an image is
needed, which is defined as qpppx̂|||wqqq. This process is called attribute reconstruction. Naturally, a
neural network is employed to take on this task. In an effort to reduce computational costs and
memory usage, this new process is facilitated within the encoder of the already existing CVAE
model. Whereas the cnn of the encoder is reused, a new feed-forward network is introduced. The
two ffn’s within the encoder are differentiated by adding a prefix to their name which relates to
their output, zffn and xffn. The new network is visualized in figure 3.13 and the corresponding
attribute reconstruction process is described as:

• Encoder - Attribute Reconstruction - qattrpppx̂|||wqqq

1. wz Ð qcnnpwz|wq

2. x̂Ð qxffnpx̂|wzq
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Figure 3.13: CVAE model incorporating the attribute reconstruction process.

The approximation of x enables an evaluation of the CVAE model’s performance in its most
important task: generating conditioned sound panels. However, the quality of this evaluation
is directly dependent on the accuracy of x̂ and the performance of the attribute reconstruction
process. This introduces a new level of uncertainty into the thesis, which must be minimized by
all means possible.

3.3.2 Neural Networks
In this section, the high-level model presented in section 3.3 is defined in more detail. It is not
obvious what kind of network design will perform best given the design problem. Since there are a
large number of parameters available that define a neural network, a structured approach is needed
so that the final number of possible parameter combinations is manageable. The first simplification
to be introduced is the concept of the cnn and ffn blocks. They describe a recurring set of layers
that can be reduced to a single block unit.

CNN Block

The cnn block is responsible for creating a meaningful and compressed representation of input w,
by filtering for patterns and other image features, as well as reversing this whole procedure in the
case of the decoder. The layers that compose a cnn block are:

• Convolutional Layer (conv),

• Transposed Convolutional Layer (conv tr),

• Maxpool Layer (maxpool),

• ReLU Layer (relu),

• Batch Norm Layer (norm),

where the encoder employs regular and the decoder transposed convolutional layers. In the encoder,
the maxpool layer is perfectly suited to compress the image to the desired shape. Upsampling the
image is not as simple, as a transposed maxpool layer leads to a bad reconstruction performance.
Therefore, transposed convolutional layers are used to expand the image by setting the stride
equal to the kernel-size of the maxpool layer. However, when applying stride ą 1 on a transposed
convolutional layer, the resulting output dimension is underdefined. Since the output image ŵ is
required to have identical dimensions as the input w, more information is needed. This information
is provided in the form of the output padding, which fully defines the output dimension of a
transposed convolution. With the methodology of compressing and expanding images within a
cnn block unit in place, three separate versions of cnn blocks are introduced in table 3.4.
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cnn block label coder set1 set2 set3
21 encoder conv maxpool + relu

decoder conv tr + relu

22 encoder conv maxpool + relu
decoder conv tr + relu conv tr + relu

32 encoder conv + relu conv maxpool + relu
decoder conv tr + relu conv tr + relu

Table 3.4: cnn block definition.

The cnn block label indicates how many sets of layers it contains, where the first digit represents
the encoder and the second the decoder block. In order to fully define the cnn block, the kernel-size
of the convolutional and maxpool layer need to be provided. The stride and padding are always
set to one.

FFN Block

The ffn block is the intersection of the cnn neural network and the latent space. It compresses and
maps the patterns and features from wz to µz and σz, from which z is sampled, and vice versa.
Due to its one-dimensional nature, defining the input and output size is trivial. The ffn blocks are
composed from the following layers:

• Linear Layer (linear),

• ReLU Layer (relu),

• Batch Norm Layer (norm),

• Dropout Layer (dropout),.

The dropout layer is a tool to decrease overfitting by zeroing out the weights and biases of neurons
with a probability pdrop. The ffn block layer sequence is defined in table 3.5.

set1 set2
ffn block linear + relu dropout

Table 3.5: ffn block definition.

The number of neurons that are present in the linear layer is defined by the parameter ffn layer size.
The probability pdrop is further defined in a later section. Additionally, for the five sub-networks
of the model, there is the option of adding a batch norm layer at the end of all contained cnn and
ffn blocks. This introduces the following five new parameters into the system:

• enc cnn norm

• enc zffn norm

• enc xffn norm

• dec ffn norm

• dec cnn norm

Since enc cnn norm and dec ffn norm are at the beginning of their respective networks, they are
automatically set to True. By default, all batch norm and relu layers are disabled for the final cnn
or ffn block of each sub-network, to prevent the transformation of a final output.
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Network Design

The network design employs the blocks defined in this section and arranges them in different depths
and constellations. Three network designs are introduced in table 3.6.

net design n cnn blocks conv kernel maxpool kernel n ffn blocks ffn layer dim
regular 4 6 2 3 512
regular ffn 4 6 2 3 1024
deep 5 3 2 4 1024

Table 3.6: Net design variations.

Due to memory usage, the dimensions of the two-dimensional wz and zw tensors should be similar
for all three network designs. The difference of wz’s size being p10, 10q or p20, 20q is a 400% increase
in pixels, which directly correlates to the number of input/output layer neurons of ffn networks.
Since the size of wz is mostly dependent on the number of cnn blocks and the corresponding conv
and maxpool kernel-sizes, these parameters need to balance each other out. The three designs
presented in table 3.6 all produce a similar size of wz, since the deep network has a smaller conv
kernel of size three. Combining the three net design variations with the three cnn block variations
gives nine possible designs for the neural network. The latent space dimension is still a free
parameter. As for the channels, they are defined identically for all design variations. In the first
layer there is a single channel, in the second eight, and from there the channels are doubled with
each cnn block to follow, as given in equation (3.9).

channels0 “ 1,
channelsi “ 8 ¨ 2i´1, i P r1, ncnn_blocks ´ 1s.

(3.9)

Table 3.7 summarizes the parameters that were introduced in this section.

free parameters value fixed parameters value
cnn block
conv kernel stride 1
maxpool kernel padding 1
ffn layer size
enc xffn norm enc cnn norm True
enc zffn norm dec ffn norm True
dec cnn norm
net design channels (1, 8, 16, 32, ...)
latent space dim

Table 3.7: block parameter definitions.

3.4 Model Loss Function
The CVAE loss described in equation (3.5) is focused on the trade-off between the reconstruction
of w and the KL divergence of encoder qpppz|||w,xqqq and prior ppppzqqq. The problem statement has
been slightly adapted with the introduction of the attribute reconstruction. The CVAE’s ability to
generate panels is not the only concern, given the questionable quality of its performance evaluation.
Therefore, the model needs to be encouraged to reconstruct attributes accurately, while developing
and improving image compression and reconstruction. This needs to be articulated in the form of
a multi-objective loss function, expanding on the already existing CVAE loss. Since it is not clear
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how these different objectives are ideally prioritized, λ weight parameters are introduced. The
generalized, multi-objective loss function is defined as:

losstot “ λwlossw ` λxlossx ` λklossk (3.10)

As formulated in the hypothesis, the expectation is that if the model is able to accurately recon-
struct the panels w and the corresponding performance attributes x, while maintaining a general-
ized latent space enforced by DKL, all necessary tools are in place to generate panels conditioned
on x and validate its own performance.

3.4.1 W Reconstruction Loss
lossw and λw are responsible for leveraging the reconstruction of the sound panel images. As
detailed in equation (3.5), classically this loss is defined as

log_likelihood “ Eq log ppŵ|z, xqq. (3.11)

In general, the output of the decoder are parameters which define the distribution ppppŵ|||z, xqqq. As
shown in equation (3.11), sampling z from the encoder q and ensuingly taking the expectation of
the log distribution ppppŵ|||z, xqqq, yields the log-likelihood. As it is a negative value, it is subtracted
from the total loss. In the case of single-channel images, like the sound panels from our dataset,
the output of the decoder p can directly be interpreted as an image. This gives the option of
replacing the log likelihood loss with the mean-squared-error (MSE) of ŵ and w which is defined
as

w_mse “ 1
n

n´1
ÿ

i“0
meanppppppŵi|||zi, xiqqq ´ wiq

2q, (3.12)

where n is the batch size. We use the average of the MSE instead of its sum, since it increases
the interpretability of lossw and makes it pixel- and batch-size agnostic. As of now, it is not clear
which of the two losses will lead to a better performance of the model. Therefore, the parameter
log likelihood is introduced that enables or disables the log likelihood loss. In case of a disabled log
likelihood parameter, the contributions to lossw from images with flat topologies are less significant
due to the nature of the MSE loss. In order to counter this behaviour, a scaled version of lossw

can be introduced by enabling the parameter rel loss. The relative loss is defined as

lossw,rel “
lossw

∆` ε
. (3.13)

where ∆ is defined as the pixel range of w and ε is a vanishingly small number for numerical
stability.

Gradient Loss

In addition to the regularw reconstruction loss, we are experimenting with a gradient loss using the
Sobel filter, as first introduced in [5]. In early test settings it became evident that the reconstruction
of the panels was mostly suffering from the inability of producing sharp edges, which is a known
problem in cvae models [13]. Since the Sobel filter is mainly used for edge detection practices, it
seems to fit the objective perfectly. The Sobel filter is defined as

Gx “

$

&

%

1 0 ´1
2 0 ´2
1 b ´1

,

.

-

, Gy “
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1 2 1
0 0 0
1 2 1

,

.

-

. (3.14)

The Gx and Gy filters are imposed on the image by setting it as the kernel of a 2d convolutional
layer convSobel. Therefore, the gradient loss lossg is defined as

lossg “MSEpconvSobelpŵq ´ convSobelpwqq. (3.15)
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In order to incorporate the gradient loss into the models objective, the total loss defined in equa-
tion (3.10) is adjusted to

losstot “ λwlossw ` λxlossx ` λklossk ` λglossg. (3.16)

3.4.2 X Reconstruction Loss
The reconstruction loss of x is relatively straight-forward. We will simply use the MSE loss in
order to get a measure of how well the performance attributes have been reconstructed. Again,
the loss is averaged over the performance attributes to enhance interpretability and make the loss
attribute-size agnostic. It is defined as

lossx “
1
m

m´1
ÿ

j“0
pqpx̂j|wq ´ xjq

2, (3.17)

where m is the total number of performance attributes.

3.4.3 KL Divergence Loss
The primary approach to applying the kl divergence is defined as

lossk “
1
dl

1
n

dl´1
ÿ

l“0

n´1
ÿ

i“0
Eqrlog qpzl|wi,xiq ´ log ppzlqs, (3.18)

where dl is the dimension of the latent space and n is the batch-size. Unfortunately qpppzqqqtrue is
not attainable, therefore the kl divergence is applied on an element basis to the easily accessible
qpppz|||wi, xiqqq, as defined in equation (3.18). Since qpppz|||wi, xiqqq is a bad approximation of qpppzqqqtrue,
the goal is not to optimize qpz|wi,xiq but to regularize it, assuming that the regularization will
lead to a qpppzqqqtrue that resembles the prior. As is usually the case with regularization, too much
over-generalizes the model while too little leaves it unregularized, as demonstrated earlier in fig-
ure 3.11.

Hereby a secondary approach to the kl divergence is introduced, that attempts to optimize the
lossk instead of using it as a tool for regularization. In order to achieve this, a better approximation
of qpppzqqqtrue is needed. Instead of sampling z from qpppz|||wi, xiqqq and computing the difference of the
log likelihoods as described in equation (3.18),the probability density function (pdf) of qpppzqqqtrue is
approximated numerically.

Listing 3.2: Secondary KL loss computation
def sec_kl_loss(batch_mean, batch_std):

# 1. define set of q given batch of mu and std parameters, as well as prior p
q_set = Normal(mean=batch_mean, std=batch_std)
p = Normal(mean=0, std=1)

# 2. compute q and p log probabilities of pre−defined x_values
x_values = linspace(start=−4, end=4, steps=batch_size)
q_set_log_prob = log_prob(q_set, x_values)
p_log_prob = log_prob(p, x_values)

# 3. get approximation of q true log probabilities by averaging over batch a
q_approx_log_prob = mean(q, dim=batch_dim)

# 4. take absolute difference of approximated q true and prior log probabilites
kl_div_sec = abs(q_approx_log_prob − p_log_prob)

# 5. average the secondary kl divergence loss over x values and latent space
return mean(kl_div_sec, dim=all)
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The procedure described in listing 3.2 can be summarized with the following equation:

losskl,batch “
1
dl

dl´1
ÿ

l“0
Ex_valuesrlog qpzl|wbatch, xbatchq ´ log ppzqs, (3.19)

where dl is the latent space dimension and xvalues is a discrete set of x-coordinates. It defines where
the secondary kl divergence is being evaluated. In its essence, the primary approach penalizes
qpppz|||wi, xiqqq whereas the secondary approach penalizes qpppz|||wbatch, xbatchqqq, which supposedly is a
better approximation of qpppzqqqtrue. This difference is visualized in figure 3.14. The red bars signify
the difference at the location of evaluation, which is given by the sampled zl for the primary lossk

and by xvalues for the secondary lossk.

Figure 3.14: Primary (left) and secondary approach (right) to the KL loss.

The number of xvalues is given by the parameter kl steps and the boundary values of this set of
discrete values by kl x, which by default is set equal to four. If kl steps is set to zero the primary
lossk is enabled. For all other positive non-zero integers, the secondary lossk is employed.

3.4.4 Metrics
losstot defined in equation (3.10) is the metric of how the model is evaluating its own performance
and subsequently of how it adjusts its weights and biases. Therefore it can be considered the most
important metric in this thesis. Nonetheless, there is a need for additional metrics that capture a
different set of characteristics and features of the model in comparison to losstot.

Reconstruction Error

The reconstruction error metrics have one important feature that differentiates it from losstot, they
are indifferent to the lambda weights. This allows a comparison of model performance with different
sets of lambda weights. Without the reconstruction error metrics, this would not be possible, since
models with the same performance can have vastly different losstot values, depending on lambda.
The reconstruction error metrics are defined as

rec_errw “
1
n

n´1
ÿ

i“0
|ŵi ´ wi|,

rec_errx “
1
m

m´1
ÿ

j“0
|x̂j ´ xj |,

rec_errtot “ rec_errw ` rec_errx.

(3.20)
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Since all performance attributes are normalized on a r0, 1s range, the x error can directly be
interpreted as a relative error percentage, e.g. an error of 0.1 is equivalent to a 10% error. The
w error needs to be divided by two before this intuitive transformation is applicable, as the pixel
range is r´1, 1s.

Design Error

The Design Error is responsible for evaluating the models ability of generating sound panels
conditioned on x. The design error itself is simply the difference of the estimated x̂gen of the
generated panel wgen and x. The procedure for the computation of x̂gen is shown in listing 3.3.

Listing 3.3: Generate panel and compute estimated performance attribute.
def compute_x_hat_gen(x):

# 1. sample latent vector from normal distribution
z = normal(zeros(z_dim), ones(z_dim))

# 2. forward z and x through decoder to generate panel
w_gen = decoder.forward(z, x)

# 3. forward generated panel through x reconstruction pipeline of encoder
x_hat_gen = encoder.reconstruct_x(w_gen)

# 4. return estimated x of generated panel
return x_hat_gen

In order to give variability to the evaluation of the design error, there are different versions of it
that are defined in equation (3.21).

design_err “ |x̂gen ´ x|,

design_errngen “
1

ngen

ngen´1
ÿ

i“0
|x̂gen,i ´ x|,

design_errnbest{ngen
“

1
nbest

nbest´1
ÿ

i“0
|x̂gen_best,i ´ x|,

(3.21)

where x̂gen_best are the estimated performance attributes of the nbest best panels from a total of
ngen generated panels. These different versions of the design error are indicated by its subscripts.
design_err is the design error of a single generated panel from x and computationally the least
expensive to calculate. design_err5 is the average of five generated panels and design_err3{10 is
the average of the three best from a total of ten generated panels, where the best panel has the
lowest design_err.

If the hypothesis posed in chapter 1 does not hold, it might be interesting to experiment adding a
design loss to the loss function in equation (3.10), that behaves similar to the design error. The
design loss is defined as

lossd “
1
n

n´1
ÿ

i“0
px̂gen,i ´ xiq

2, (3.22)

where n is the batch-size and the generation of x̂gen,i is given in listing 3.3. It is not trivial
to train the model on the design loss in the first place, since the model could find loop holes in
order to minimize the design loss without actually solving the design problem. The model would
only focus on encoding the requested x in the output image ŵ, without an incentive of generating
an image resembling a sound panel. Therefore, a sleep and transition parameter is introduced
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in combination with λd. It allows to gently introduce the λd weight with sleep and transition
periods defined as

λd,current “ minpmaxpepochcurrent ´ sleep` 1, 0q
transition

, 1qλd, (3.23)

where λd,current is always in the range r0, λds. With these additions, the losstot defined in equa-
tion (3.10) is adjusted to

losstot “ λwlossw ` λxlossx ` λkllosskl ` λd,currentlossd. (3.24)

Mixed Error

Since the design error itself is not a good measure for overall performance and the reconstruc-
tion only indicates the panel generation performance conditioned on x, there is a need for an
all-encompassing, global metric. Therefore, the mixed error is introduced, which combines the
reconstruction and the design error, as the name suggests. It is defined as

mixed_err “ rec_errtot ` 0.25 ¨ design_err. (3.25)

The design_err is scaled down because the design performance is only successful if combined
with a small rec_errtot. Therefore, it is to be avoided that a small design_err alone can yield a
respectable mixed_err. Otherwise it is considered a fluke and the small design_err is produced
by exposing a loophole in the design task. A scale of 0.25 is a good compromise of the design_err
being relevant and of being confident that the mixed_err can not be minimized without a good
performance in the classic reconstruction tasks.

3.4.5 Optimizer

To adjust the weights after backpropagating the loss, the Adam optimizer provided by pytorch is
used. The optimizer is initialized by configuring the learning rate and the weight decay parameters.
In order to decouple the weight decay λwd from the batch-size and number of epochs, the formula
given in equation (3.26) is applied, which was proposed in [8].

λwd,norm “ λwd

d

b

nsamples ¨ nepochs
, (3.26)

where b is the batch-size. The weight decay functions in a similar manner as a classic L2 regu-
larization. It reduces the models tendency of overfitting and enables it to generalize better by a
gradual decay of the models weights. However, it is not desirable to apply this regularization to
batch norm layers, therefore these weights are excluded. Another methodology of increasing the
models performance on validation and test data, is to introduce weight dropouts in the networks,
which were introduced in table 3.5. Technically they are not configured by the optimizer, but they
belong to the same domain of optimizing model performance. Instead of decreasing the magnitude
of the weight, a probability pdrop is introduced with which the weight is being nullified. This
probability is given by the dropout parameter and will only be applied on feed-forward networks.
Since the reconstruction of w and x are two separate tasks, the parameters weight decay x and
drop x act only on the xffn layer, whereas weight decay w and drop w apply to the rest of the
network. Table 3.8 summarizes the parameters that were introduced in this section.
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reconstruction kl divergence design error optimizer
lambda w lambda k lambda d lr
lambda x kl batch sleep weight decay w
lambda g kl steps transition weight decay x
log likelihood kl x drop w
rel loss drop x

Table 3.8: CVAE loss parameter definitions.

3.5 Supplementary Data Representations
As in most cases, the images in our dataset are only an abstraction of the actual objects they
represent. Encoding the z-coordinate as the pixel value enables us to display a 3d object in a 2d
environment. With this knowledge, a 3d model of a sound panel and its corresponding 2d image
can be considered as analogous from an information point of view. However, the neural network
does not have this knowledge. All it sees is the image and the performance attributes and the rest
is up to the network to explore. Allowing the model to be exposed to additional meaningful data
representations of the same sound panel, can help advance its understanding of the underlying
patterns and relationships.

3.5.1 FFT Filter
The Fast Fourier Transform (fft) is a popular method in deep learning and computer vision [3]. It
transforms the input from the real into the frequency domain. We make use of it by filtering the
sound panel image for its low- and high-frequency contents, decomposing w into wdec. By doing
so, the task of reconstructing ŵ is divided in multiple but less complex sub-tasks ŵdec, since each
image only contains a certain range of frequencies. The assumption is that the wdec will help
the model to reconstruct especially the high-frequency contents of the images, as well as filtering
out relevant characteristics that define the performance attributes. The operational procedure of
decomposing the image w into its sub-images is detailed in listing 3.4.

Listing 3.4: Decomposition of image.
def decompose_w(w, filters):

# 1. apply the fast fourier transform on w
w_fft = fft(w)

# 2. iterate over filter ranges and decompose w in the frequency domain
w_fft_dec = []
for filter in filters:

w_fft_filtered = filter.apply(w_fft)
w_fft_dec.append(w_fft_filtered)

# 3. transform w decomposed back into real domain
w_real_dec = []
for w_fft in w_fft_dec:

w_real = fft_inverse(w_fft)
w_real_dec.append(w_real)

# 4. return decomposed w
return w_real_dec
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The number and magnitude of filters are defined by introducing two new parameters named filter1,
filter2 and filter3. They define the boundaries within the frequency domain to create the ranges
with which the input image w is decomposed. The normalized ranges are defined as

filter_range1 “ r0, filter1s,

filter_range2 “ rfilter1, filter2s,

filter_range3 “ rfilter2, filter3s,

filter_range4 “ rfilter3, 1s.

(3.27)

If all filters are set to zero, there is only a single filter range for r0, 1s, meaning no filtering at all. An
example is shown in figure 3.15, with two non-zero filters and therefore three active filter ranges.
The corresponding frequency domains are given in figure 3.16. The color respectively grey-scale
range of each image is normalized separately for a clearer visualization.

Figure 3.15: Image w left, decomposed images wdec,0, wdec,1 and wdec,2 on the right.

Figure 3.16: Corresponding frequency domains (cropped).

In order to forward the set of decomposed images wdec through the model, the number of channels
for each cnn is multiplied times the number of sub-images. The concept is analogous to RGB
images, only that in this case frequency domains are being passed through the cnn network instead
of color channels. Similarly to RGB channels, the reconstructed decomposed output images ŵdec
are combined to create the final output image ŵ. In order to further optimize the fft filter approach,
two new parameters avg xffn and dec loss are introduced that allow slight modifications in the
method execution.

parameter value
avg xffn True x̂ “ xffnpwzavgq

False x̂ “ xffnpwzdecq

dec loss True lossw “ sumpmsepŵdec, wdecqq

False lossw “ msepŵ, wq

Table 3.9: Definition of avg xffn and dec loss parameters.

As shown in table 3.9, if avg xffn is set to True, wzdec is averaged over its decomposition before
being passed to the xffn network. This reverts the increase in dimensionality introduced by the
number of decomposed images ndec for wzavg. When avg xffn is set to False, wzdec is regularly
forwarded to xffn. If dec loss is set to True, lossw is computed on ŵdec and therefore on each
decomposed image separately before being summed up. In the case of dec loss being False, ŵdec

is summed up over its sub-images to create ŵ before computing lossw.
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3.5.2 FFT CNN
Building on the framework that was laid out in section 3.5.1, the images in the frequency domain
shown in figure 3.16 might have more value than just being used as a decomposition tool of w. For
this reason, a new network fft cnn is introduced, which takes a cropped version of wfft defined
in listing 3.4 as input. The resulting output is forwarded solely to the xffn network, under the
assumption that it is not a meaningful data representation for the reconstruction of w. The output
image of cnn fft is defined as wxfft, or

• wxfft Ð pcnnfft
pwxfft|wfftq.

The cnn is constructed using the already defined blocks. Two additional parameters are necessary
to finalize the fft cnn, which are defined in section 3.5.2.

parameter
n blocks cnn fft gives the number of cnn blocks to be used.
dim fft defines the dimension of the cropped wfft image.

3.5.3 Slicer
It is questionable how well the model is able to take a 2d input and extract features that are
relevant in a 3d topography. The objective of the slicer method is to supply an additional data
representation of the sound panel that enables the model to develop an enhanced three-dimensional
intuition. This is achieved by slicing the sound panel at different heights and creating a low
resolution 2d binary image that abstracts the shape of the panel at that specific z-coordinate, as
visualized in figure 3.17.

Figure 3.17: Single slice (left) and stacked slices (right).

It is assumed that these slices enhance the perception of a three dimensional space and create
an intuitiveness about the depth of the sound panels. Once the number of desired slices is set,
the z-coordinates are defined by evenly spacing the interval rminpwq,maxpwqs of the given panel,
where the resulting image of the first and the last slice is trivial and therefore discarded. The
desired resolution of the slice is attained by applying a simple maxpool operation on w. The slices
are flattened to create a one dimensional vector s and concatenated to wz before being passed
into the ffn networks. The number of slices is given by n slices and the desired resolution by slice
dim. In order to further modify the slicer methodology, two additional parameters are introduced
in section 3.5.3.

parameter
slice xffn True x̂ “ xffnpwz ` sq

False x̂ “ xffnpwzq
slice zffn True z “ zffnpwz ` sq

False z “ zffnpwzq
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These two additional sub-processes of the fft cnn and slicer pipeline are implemented in the existing
model as shown in figure 3.18.

Figure 3.18: CVAE model architecture with additional sub-networks.

Table 3.10 summarizes the parameters that were introduced in this section.

fft filter fft cnn slicer
filter 1 n blocks cnn fft n slices
filter 2 dim fft slice dim
filter 3 slice xffn
avg xffn slice zffn
dec loss

Table 3.10: supplementary data representation parameter definitions.
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Results

In the results section, all relevant runs of the model are documented, visualized and its performance
evaluated. It provides a structured overview of the models evolution and clarifies how decisions
have been made regarding the parameters listed in table 4.1. The base, tuned and final model
are presented with selected plots and figures, whereas the graphics of the hyperparameter tuning
sessions are held to a minimum. The appendix contains a complete set of figures for the presented
models, as well as a visualization of each tuning session. The plots and figures have been created
using Weights & Biases, matplotlib and plotly.

4.1 Base Model

Model FFT Filter FFT CNN Slicer
enc zffn norm True filters (0, 0, 0) n blocks cnn fft 0 n slices 0
enc xffn norm True avg xffn False dim fft 0 dim slice 0
dec cnn norm True dec loss False slice xffn False
cnn block 21 slice zffn False
net design regular
z dim 128
Losses Regularization Optimizer Design Error
lambda w 1 drop w 0 optim Adam lambda d 0
lambda x 1 drop x 0 lr 5e-4 sleep 0
lambda g 0 weight decay w 0 batch-size 256 transition 0
log likelihood False weight decay x 0 epochs 30 lambda k 1e-3
rel loss False kl steps 0

Table 4.1: Parameter configuration of the base model.

In order to evaluate the concepts and methodologies demonstrated in chapter 3, a base model is
introduced that functions as a performance bar. It is the most basic setup of the CVAE model
and gradually more functionalities are being added in section 4.2. The base parameters are set as
given in table table 4.1.

27
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Network sub net input dim dim1 dim2 dim3 dim4
Encoder cnn (1, 200, 200) (8, 98, 98) (16, 47, 47) (32, 22, 22) (64, 9, 9)
6.1M par zffn 5184 512 (2, 128)

xffn 5184 512 6
Decoder ffn 134 512 5184
3.1M par cnn (64, 9, 9) (32, 22, 22) (16, 47, 47) (8, 98, 98) (1, 200, 200)

Table 4.2: Components of the base CVAE model.

The dimensions of the models sub-networks are detailed in table 4.2. The model contains a total
of 9.2M parameters, taking up an estimated memory of 36MB. The encoder and decoder are very
similar, with the large exception being the added xffn in the encoder.

4.1.1 Performance
The table below details the performance of the base model in various metrics. The total and design
error are highlighted as they are the main basis for comparison between different models.

evaluation epoch train loss val loss total error design error
best 27/30 0.0084 0.0124 0.1012 0.1937

When observing the losses chart displayed in figure 4.1, the val x loss stands out negatively. It
stagnates rather quickly whereas the train x loss is consistently improving. The model has obvious
problems of generalizing the attribute reconstruction, which is accounting for the largest share of
the validation loss as a consequence. The train loss is linearly improving on a logarithmic scale,
showing great potential for the model. If the val x loss can be generalized better, the overall results
will improve significantly.

Figure 4.1: Timeline of loss and error progression.

The errors on the right plot are approximately mirroring the val losses. The patterns are very
similar, albeit the progression curves are generally slightly flatter, which can be traced back to
the quadratic nature of the MSE. However, a concerning development is that the design error
does not seem the follow the patterns of the other errors, displayed in the right table. It shows
some overall improvement, but the trendline is very flat. Its high dependency on an accurate
attribute reconstruction could be a substantial factor in these results. Potentially, improving the
x error should have a significant impact on the design error, assuming the hypothesis stated in the
introduction is to hold.
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Reconstruction

For a qualitative comparison between different models, a similar panel range as presented in fig-
ure 3.8 is computed from validation data and reconstructed for the attributes fft mean and high res
y. The selected images translate into a small but fairly representative sample size of the dataset.

Figure 4.2: Panel reconstruction and fft mean attribute errors.

Figure 4.3: Panel reconstruction and high res y attribute errors.

The upper panels represent the inputs, the lower panels the reconstructed outputs. The model al-
ready is doing a respectable job with reconstructing the panels, considering that 401000 parameters
are being encoded in a latent space of 128 variables. As shown in the legend on the bottom right,
the figure displays the true attribute value xi in beige (left bar) as well as the reconstructed x̂i in
light green (middle bar) and its corresponding attribute error in light red (on top of middle bar).
The attribute reconstruction is slightly off the mark for some examples, reflecting the performance
presented in figure 4.1. However, it is able to approximate the true attribute. The estimated
attribute x̂rec,i for the reconstructed panel is given in green (right bar) and its corresponding
error in red (on top of right bar). It is defined as |x̂rec,i ´ xi| and the first application of the
full reconstruction and evaluation loop. In order to compute this error, the model reconstructs
the panel and forwards ŵ to the attribute reconstruction pipeline of the encoder. Subsequently,
it can measure its own performance by computing the estimated performance attribute x̂rec,i of
the reconstructed panel and compare it with the initial xi. The approximated uncertainty of this
estimation is visualized with the blue error bars on top of the x̂rec,i bar, which are equal to the
value of the original attribute reconstruction error. The x̂rec,i error is a good first indication of
the models ability to generate panels on conditionality. These figures suggest that the model will
struggle with the conditional generation of panels, as the red error bars are consistently large. A
complete set of these evaluations can be found in the appendix figure A.2.
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Figure 4.4: Base error distribution of fft mean and high res y attributes.

A more quantitative evaluation of the reconstruction performance is presented in figure 4.4. Each
plot analyzes the full distribution of a performance attribute and splits the data in ten buckets,
corresponding to a relative range of 10% at a time. From each bucket, the mean of the w and
x reconstruction errors is calculated and plotted, where the error bars represent the 25% and
75% confidence intervals, respectively. The blue line represents the error of w reconstruction, the
red line the x reconstruction. In figure 4.4, the evaluated attributes are fft mean (left) and high
res range (right), the full set of figures is documented in figure A.1. As expected, the errors are
peaking where the data is least representative, especially in the case of the x error for the high res
attribute. The average error for the final bucket (or datapoint in the plot) is close to 20% and the
0.75 confidence interval even above that mark.

Latent Space

In order to reveal the hidden latent space distribution, two separate methods have been imple-
mented, as visualized in figure 4.5. Initially, a large set of computed µz and σz are collected by
passing the validation data through the encoder. The distribution of this collection is visualized
in the left plot, where the dashed lines represent the regularizing prior. The blue line displays how
µz is distributed, the green line σz. On the right plot, each of the 128 z variables are estimated by
numerically adding up and normalizing the resulting distributions from the collected µz and σz,
where the red dashed line represents the regularizing prior. This procedure is part of the secondary
lossk computation described in equation (3.19), only that the batch is the full validation set in this
case.

Figure 4.5: Distribution of mu and sigma (left) and estimated latent space variables (right).
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The results give another intuitive representation of the kl divergence’s role in a CVAE model. As
evident in the left plot, the separate µz’s and σz’s have diverged significantly from the prior and
are accordingly penalized. When inspecting the right plot, the estimated distributions of the latent
space variables resemble a standard normal Gaussian with some minor modifications. This means
that the kl divergence has done its job in regularizing µz and σz. The latent space in its entirety
is still embodying the desired properties.

Design Error

While the x̂rec is a good first estimation of the final objective, figure 4.6 is the final assessment of
the models panel generation and self evaluation performance. It is structured similarly as figure 4.4,
with the only difference being that the red line represent the design{err10 and the light blue line
the design{err3{10, as defined in equation (3.21). The x-axis indicates the design conditions that
are passed to the model, where the x attributes of the full validation data set are used as attribute
requests. The figures are scaled to an error of 0.7 or 70%, and shockingly the averaged design error
reaches that mark. By further observation, one can conclude that the model produces designs with
approximately the same attributes, no matter the request. That is evident by the fact that the
design error increases almost linearly from a certain point in the distribution. The low point in
the design error plot is the preferred attribute value of the models generated designs. It is safe to
conclude that the panel generation conditioned on performance attributes is not working yet.

Figure 4.6: Base design error of fft mean and high res y attributes.

4.2 Hyperparameter Tuning
The hyperparameter tuning process should provide clarity and gradually reduce the number of
free parameters. The model is still resemblent of a black-box, not much is known regarding its
performance and potential at this point. Each run reveals a glimmer of information that builds
up an understanding of the models dynamics. Only if the hyperparameter tuning is carried out
carefully and with attention to detail, a more efficient and interpretable model can be realized.
However, this process is not exact science. Decisions are frequently made on assumptions and
intuition instead of based on absolute certainty. It is a trade-off between efficiency and confidence,
where the sweet-spot is at neither boundary.
As seen in table 4.1, there is a large number of parameters that are yet to be implemented and
defined. Optimizing for all of these parameters at once is computationally infeasible. Thus, the
parameters are split in a set of subcategories, where the tuning sessions are being carried out.
These parameter subsets are already given in table 4.1. After each tuning session, the default
parameters from the base model are adjusted with the best performing configuration and passed
to the next subcategory. The tuning sessions are executed out as so-called Sweeps, which is an
internal tool of the Weights and Biases platform. It allows for the configuration of the relevant
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metric and parameters, as well as the search space and search method. The used methods are grid,
random and bayes. Two mechanisms of early-stopping have been implemented in the tuning setup,
the hyperband algorithm and a classical early-stopping callback. The former compares its own
performance with previous runs, whereas the latter is only concerned on its own progression. The
minimum number of epochs before the early-stopping evaluation is enforced needs to be defined
for both. For practical reasons, the two parameters are given as nepochs,1{nepochs,2.

4.2.1 Model
The first hyperparameter tuning session is documented in additional detail to guide the reader
through the process. Here, the parameters given by the subcategory Model are split again and
tuned separately in session A and session B. Initially, the run is configured by setting the basic
metrics. In the case of session A, given by table 4.3, the batch norm parameters are being evaluated.
The search space is given by rTrue, Falses for all three parameters and the applied method is grid,
which yields a total of eight combinations. By setting the number of runs to eight, the whole search
space is explored.

session config A parameter search space set evaluation
method grid enc zffn norm True, False True train loss 0.0099
epochs 10 enc xffn norm True, False False val loss 0.0121
early-stopping 5/5 dec cnn norm True, False False total error
runs 8

Table 4.3: Summary of model design tuning A.

The execution of the tuning session is visualized in figure 4.7, which generally is documented in
the appendix A.2. It displays the parameters of each run and the corresponding performance. The
color coding is useful in order to identify the most influential nodes in the defined search space.
In order to build intuition of the models dynamics, it is just as valuable to understand which
configurations do not result in a good performance as those that do. After evaluating the results,
each parameter is set as displayed in the parameter section of table 4.3. The losses and errors of
the best performing run are shown in the evaluation section, where the metric that is used by the
early-stopping and search space algorithms is given in bold.

Figure 4.7: Overview of batch norm tuning.

For session A, the most influential parameter is clearly the decoders cnn norm batch layer. That is
already evident in figure 4.7, but even more clearly visible if singled out and visualized, as shown
in figure 4.8. The lines represent the mean of the given group of runs, whereas the body defines
the groups boundaries.
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Figure 4.8: Significance of dec cnn norm parameter.

The evaluations have shown that the batch norm layers for the decoder cnn and the encoder
xffn should be disabled. This is an intuitive result, since those are the two output layers for the
reconstruction of panels and attributes. Especially in the case of the decoder cnn, it is harder
to optimize the reconstructed panel if the cnn blocks rescale their outputs. Interestingly, it is
preferred to keep the batch norm layer of the cnn zffn network active. z is not a final output of the
network, except for the computation of lossk, which explains the preference of keeping the batch
norm layer active. However, the results were not close of being conclusive in this case.

session config B parameter search space set evaluation
method grid cnn block 21, 22, 32 21 train loss 0.0092
epochs 10 design regular regular val loss 0.0116
early stop 5/5 regular ffn total error
runs 27 deep

z dim 64, 100, 128 128

Table 4.4: Summary of model design tuning B.

Session B tunes the high-level parameters of the model structure. All parameters have a discrete
set of three values, yielding a total search space of twenty-seven combinations. The model is still
relatively basic and efficient, thus it is reasonable to explore all twenty-seven configurations, as
defined in the config section of table 4.4. The overview of tuning session B is shown in figure 4.9.

Figure 4.9: Overview of network design tuning.
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What stands out most from the results is that in its current form, the model generally performs
better with a simple architecture. This is the case for the complexity of the cnn blocks as well as
for the network depth. The parameter with the biggest impact is the net design. In figure 4.10, it
is evident that the deep network does not perform well in comparison to its counterparts. However,
these results need to be taken with a grain of salt since only the first ten epochs are evaluated.
Generally, ten epochs is enough to discern a trend that holds true also for a longer training period.
In the case of the net design, the deep network can be excluded from further conversation with
fairly high confidence. The remaining two network designs regular and regular ffn, that only
differentiate in the layer size of the ffn blocks, perform almost identically. Thus, the simpler design
parameter is chosen as there seems to be no reason to increase the number of neurons of the ffn
nets. As for the latent space dimension z dim, it is not surprising that a larger latent space results
in better performance. An increased bottleneck allows for more information to flow through. A
latent space dimension of 128 is still ambitious considering the complexity of the panels, therefore
it is reasonable to go with the highest performance and not change the latent space size. This
concludes the model tuning and finalizes the network architecture.

Figure 4.10: Significance of design parameter.

4.2.2 Slicer

session config A parameter search space set evaluation
method grid slice xffn True, False True train loss 0.0085
epochs 10 slice zffn True False False val loss 0.0112
early stop - n slices 5 total error
runs 4 slice dim 5

Table 4.5: Summary of slicer tuning A.

In session A of the slicer tuning, default values have been set for the n slices and slice dim
parameters. This enables an evaluation of the slicer in general and whether the resulting output
is useful for both, or either one of the encoders ffn networks, before optimizing the number of
slices and their respective dimension. Figure (c.1) in appendix A.2.1 shows an improvement of the
validation loss if the slices are forwarded to the xffn network. On the contrary, the slices clearly
decrease the performance if forwarded to the zffn network. This is to be expected, since the depth
of the panel is not necessarily helpful in order to reconstruct information that is already fully
available at the input. As a matter of fact, there is arguably no information source that can help
the model to reconstruct the panel, other than the panel itself. Table 4.5 summarizes the setup
and results of the first slicer tuning session.
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session config B parameter search space set evaluation
method random slice xffn True train loss 0.0076
epochs 10 slice zffn False val loss 0.0105
early stop 5/5 n slices r3, 10s „ uni 4 total error
runs 20 slice dim r5, 12s „ uni 11

Table 4.6: Summary of slicer tuning B.

The learnings of session A are now applied in session B, by setting the slice xffn and zffn values to
True and False, respectively. The search space of the n slices and slice dim parameters is distributed
uniformly and discretely over the ranges given in table 4.6, as only integer values are allowed. The
given search space yields forty-nine different combinations and twenty of those have been sampled
randomly by setting the metric to random and conducting twenty runs. The execution of the
tuning session is shown in figure (c.2) of appendix A.2.1. Four slices at a dimensioniality of (11,
11) turned out to be the best configuration of the sliced data representation of the panel. This
yields a binary vector s of size (484) that is being concatenated to wz before being passed to the
xffn network.

4.2.3 FFT Representations

FFT Filters

session config A parameter search space set evaluation
method grid avg xffn True, False True train loss 0.0085
epochs 10 dec loss True False True val loss 0.0102
early stop - filter 1 0.01 total error 0.0910
runs 4 filter 2 0

filter 3 0.03

Table 4.7: Summary of fft filter tuning A.

Similarly to the slicer tuning, there are two boolean parameters that are defined prior to tuning
the actual values of the filters. The parameters avg xffn and dec loss modify the application of the
fft filter method, as defined in table 3.9. As the dec loss parameter might have a small impact on
the scaling of val loss, the total error is used as the guiding metric for this tuning session. Both of
the modifications introduced by the two parameters seem to improve the performance of the model
with the filters set to default values of (0.01, 0, 0.03). Especially aggregating the three frequency
channels into a single channel before passing it to the xffn layer seems to have a significant impact
on general performance, as demonstrated in the left plot of figure 4.11.
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Figure 4.11: Significance of avg xffn parameter (left) and impact of channels on computation time
(right).

session config B parameter search space set evaluation
method grid avg xffn True train loss 0.0080
epochs 10 dec loss True val loss 0.0099
early stop 5/5 filter 1 0, 0.01, 0.015 0.015 total error 0.0900
runs 27 filter 2 0, 0.02, 0.025 0

filter 3 0, 0.03, 0.035 0.03

Table 4.8: Summary of fft filter tuning B.

In session B of the fft filter tuning, each filter is given a discrete search space of three possible
values, where one of them is zero. By using the grid method and testing all possible configurations
with twenty-seven runs, not only can we evaluate the individual filter values but the impact the
number of frequency channels has on performance. The right plot in figure 4.11 gives a compressed
overview of the session B, where the focus is set on the number of channels. The figure suggests
that three channels and therefore two active filters improve the model the most. The value of these
filters has high relevancy as well, evident by the spread of the separate runs with three frequency
channels. Additionally, the plot gives insights in the computation time, which turns out to be
linearly increasing with the number of channels.

Figure 4.12: Significance of frequency channels regarding w loss (bottom) and x loss (top).

In figure 4.12, the impact of the frequency channels on lossx and lossk is investigated. Surprisingly,
the panel reconstruction seems to be unaffected by the decomposition of w, it does not increase
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nor decrease performance. The attribute reconstruction on the other hand benefits from the
frequency filters, as the run with a single channel displays the worst performance. In order to stay
computationally efficient, the filters are disabled for the ensuing tuning sessions and activated once
the tuning has concluded.

FFT CNN

session config parameter search space set evaluation
method grid fft dim 30, 40 40 train loss 0.0101
epochs 10 n fft cnn blocks 1, 2, 3 2 val loss 0.0108
early stop 5/5 total error 0.0937
runs 6

Table 4.9: Summary of fft filter tuning.

The search space for the two parameters yields a total of six possible configurations, which is
explored in its entirety. The corresponding overview of the session can be found in figure (a.1) in
the appendix A.2.2. It is worth noting that even though the validation loss in table 4.9 increased
compared to the performance in the fft filter tunings, the comparison is flawed as the filters have
been disabled as previously mentioned. An additional test with enabled filters showed an overall
improvement with a val loss of 0.0096, as documented in figure (a.2) in appendix A.2.2. There-
fore, the model seems to be able to extract valuable information from the frequency representation
of the sound panel. The fft cnn tuning session concludes the modifications that are made on the
model itself and the focus shifts towards optimization in the following sessions.

4.2.4 Losses

session config parameter search space set evaluation
method bayes lambda x [0.1, 1] „ uni 1 train loss 0.0103
epochs 10 lambda w [0.1, 1] „ uni 1 val loss 0.011
early stop 5/5 lambda g [1e-3, 1e-1] „ log uni 0.01 total error 0.092
runs 10 log likelihood False, True False

relative loss False, True True

Table 4.10: Summary of reconstruction losses tuning.

In the tuning session of the reconstruction losses, the bayes algorithm is used for the first time. The
search space of lambda x and w is given by a uniform distribution whereas lambda g is uniformly
distributed on a logarithmic scale. This enables the algorithm to virtually decrease lambda g to
zero or boost its significance up to 0.1. Additionally, the parameters that enable or disable the
log likelihood and the relative loss are included in the same tuning session. In this setup, the
validation loss is useless as the bayes algorithm would simply decrease all weights to its minima
in order to minimize the loss. Thus, the lambda-agnostic total error is employed to evaluate the
runs and guide the tuning session. The regularizer lambda k is not included in this session, as its
regularization purpose is not captured by the reconstruction loss nor error. The smoothness of
the latent space becomes relevant once the design error is evaluated, therefore its introduction is
postponed. There are no apparent surprises regarding the results of the lambda weights, except
that a small value for the gradient loss had a favorable influence on the total error.
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Figure 4.13: Significance of rel loss (left) and log likelihood (right) parameters.

The result for the relative and the log likelihood loss are both rather convincing, as demonstrated
in figure 4.13. By closer inspection, one can observe that the parameters have not been mixed
by the bayes algorithm in any of the runs, meaning rel loss: False is always matched with log
likelihood: True and vice versa. Figure (b) in appendix A.2.2 confirms this observation. This leads
to two identical plots in figure 4.13. This is one of the shortcomings of the bayes algorithm, it
tends to ignore certain combinations. However, since the results can be compared to the previous
session where both parameters were set to False, the suggestions in figure 4.13 can be confirmed.
Apparently, the mse loss is outperforming the log likelihood loss significantly. It is important to
note that the relative loss has rescaled the w reconstruction loss and therefore the validation loss
can not directly be compared with previous models.

4.2.5 Dropout and Weight Decay

session config A parameter search space set evaluation
method bayes drop w [1e-4, 3e-1] „ log uni 1e-3 train loss 0.0050
epochs 30 drop x [1e-4, 3e-1] „ log uni 2e-3 val loss 0.0098
early stop 15/5 weight decay w [1e-4, 1e-2] „ uni 1e-3 total error 0.081
runs 25 weight decay x [1e-4, 1e-1] „ uni 1e-2

Table 4.11: Summary of dropout and weight decay tuning A.

When examining the losses of the base model shown in figure 4.1, the potential to improve the val
x loss by implementing dropout and weight decay is supposedly high. The session A is configured
with a dropout probability range that goes up to 0.3 and a maximum number of epochs of thirty.
However, as shown in the overview figure (c) of the tuning runs in appendix A.2.1, the bayes
algorithm is very hesitant to increase the dropout probabilities. This is also reflected by the
conservative dropout values that are set by the best performing configuration in table 4.11.
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Figure 4.14: Comparison of validation and train losses.

Further investigation on the best performing run shows a large discrepancy of the train and valida-
tion x loss, as displayed in figure 4.14. Given the low values for the dropouts chosen by the bayes
searching method, these results are not surprising. In order to understand the dropout dynamics
better, an additional test run is initialized.

session config B parameter search space set evaluation
method grid drop w 0.01, 0.05 1e-3 train loss 0.0058
epochs 50 drop x 0.01, 0.02, 0.05, 0.1 2e-3 val loss 0.0094
early stop 30/10 total error 0.079
runs 8

Table 4.12: Summary of dropout and weight decay tuning B.

The number of epochs in session B is increased to fifty and the early stopping to 30/10, in order
to let the runs develop without interruption. The search method is switched from bayes to grid to
make sure that the higher dropout probabilities are properly tested. Table 4.12 summarizes this
setup.

Figure 4.15: Overview of dropout and weight decay tuning.

The plots in figure 4.15 group the runs of the four drop x probabilities together and visualizes the
train and val x loss over fifty epochs. These results confirm that the attribute reconstruction is
very sensitive to dropouts. Even a rather insignificant probability of 5% has a massive impact,
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especially on the train loss. It is not clear what the root cause of this sensitivity is. It seems that
the attribute reconstruction is a complex task that suffers from small perturbations in the train
loss and the disruption does not lead to a better generalization in the validation loss. Even though
session B produced slightly better final results, it was also trained for almost double the number
of epochs. Projecting the results of session A for an additional twenty epochs is likely to improve
the results even further, therefore the set parameters are not adjusted in table 4.12.

4.2.6 Optimizer

session config parameter search space set evaluation
method bayes optim Adam, AdamW Adam train loss 0.0078
epochs 15 batch size 64, 128, 256, 512, 1024 128 val loss 0.0106
early stop 7/3 lr [1e-5, 1e-3] „ log uni 4e-4 total error 0.0857
runs 20

Table 4.13: Summary of optimizer tuning B.

In the optimizer tuning, the number of epochs is reduced back to fifteen, since the evaluation is no
longer focused on generalization and overfitting. The tuning session is using the bayes algorithm to
explore the search space of the discretely distributed batch size and log uniform distributed learning
rate, while a comparison of Adam and AdamW is conducted. AdamW is an advanced version of
Adam, with an improved application of weight decay. It is always advisable to investigate how
the own model reacts to these adjustments, before taking a decision on the optimizer type. The
twenty runs are visualized in figure (d) in appendix A.2.2.

Figure 4.16: Significance of batch size.

The most notable development in this tuning session is the performance of the different batch sizes.
Figure 4.16 groups the validation loss of the tested batch sizes, where the body is given by the
standard error. Surprisingly, the best batch size is not the largest, but a relatively small batch of
128 samples. Most literature suggests that the larger the batch size, the better. However, Keskar
et. al. [6] demonstrate the dynamics of the batch size in deep learning and how it can be beneficial
to generate sharp gradients with smaller batch sizes. The results in figure 4.16 seem to support
these claims.
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4.3 Tuned Model

Model FFT Filter FFT CNN Slicer
enc zffn norm True filters (0.015, 0.03) n blocks cnn fft 2 n slices 4
enc xffn norm False avg xffn True dim fft 40 dim slice 11
dec cnn norm False dec loss True slice xffn True
cnn block 21 slice zffn False
net design regular
z dim 128
Rec Loss Regulariz. Optimizer Design Error
lambda w 1 drop w 1e-3 optim Adam lambda d 0
lambda x 1 drop x 2e-3 lr 4e-4 sleep 0
lambda g 0.01 weight d. w 1e-3 batch-size 128 transition 0
log likelihood False weight d. x 1e-2 epochs 30 lambda k 1e-3
rel loss True kl steps 0

Table 4.14: Parameter configuration of the tuned model.

The tuned model demonstrates the accumulation of accomplishments made in section 4.2. The
parameters were optimized with the objective of minimizing the panel and attribute reconstruction
error, anticipating an improved design error as a result. Table 4.14 displays the parameters that
define the tuned model, with every adjustment in bold.

Network sub net input dim dim1 dim2 dim3 dim4
Encoder cnn (3, 200, 200) (24, 98, 98) (48, 47, 47) (96, 22, 22) (192, 9, 9)
12.8M par cnn fft (1, 40, 40) (8, 18, 18) (16, 7, 7)

slicer (1, 200, 200) (4, 11, 11)
zffn 15558 512 (2, 128)
xffn 6368 512 6

Decoder ffn 134 512 15552
9.2M par cnn (192, 9, 9) (96, 22, 22) (48, 47, 47) (24, 98, 98) (3, 200, 200)

Table 4.15: Components of the tuned cvae model.

The encoder of the tuned model has evolved compared to the base encoder, as shwon in table 4.15.
On one hand, the number of channels of the cnn have tripled, due to the introduction of the image
decomposition based on the panels frequency values. On the other hand, two new sub-networks
are introduced, the slicer and the cnn fft. Except for the increase in channels, the decoder has not
changed. In total, the tuned model contains 22M parameters, taking up an estimated memory of
87MB.

4.3.1 Performance

evaluation epoch train loss val loss total error design error
best 30/30 0.0042 0.0086 0.0748 0.2033

The tuned model is improved in all of its reconstruction metrics. It is important to note that
the val loss is rescaled due to changing lambdas and adjusted calculations such as the relative
loss, therefore it is not directly comparable to the base models validation loss performance. The
total error decreased significantly, and the difference of the validation losses would be even greater
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without the rescaling. Despite all the achievements, the design error is not improved - in fact,
it is slightly increased compared to the base model. The dynamics of the design error displayed
in figure 4.17 are unchanged. Further evaluations of the reconstruction and design errors can be
found in the appendix A.1.2. As the tuned model has not developed the ability to generate panels
conditioned on the performance attributes, additional efforts are needed to achieve the objective
of this thesis.

Figure 4.17: Timeline of loss and error progression.

4.4 Design Error Tuning

In order to improve the design error, an additional tuning session is initialized that is focused on
this one objective.

4.4.1 Session A: Introduction of Design Loss

session config A parameter search space set evaluation
method bayes lambda d [1e-5, 1e-1] „ log uni 2e-5 train loss 0.0082
epochs 15 sleep 0, 5, 10 0 val loss 0.0149
early stop 10/3 transition 10 total error 0.1085
runs 30 design error 0.1882
runs 30 mixed error 0.1570

Table 4.16: Summary of design error tuning A.

In the first tuning session, lambda d is introduced as a parameter. With this introduction, the
model is not solely focused on reconstructing w and x, but it is explicitly trained on the ability
to generate conditioned panels. The search space of lambda d is log uniform distributed, in order
to allow the bayes algorithm to operate rather unconstrained. It is guided by the mixed error
to account for the reconstruction and the design error, which was introduced in equation (3.25).
There are a lot of uncertainties with this new method, therefore it is advisable to fully explore the
space of possibilities before narrowing down on a potential solutions. Figure A.12 (a) gives the
overview of the separate runs. As evident in table 4.16, this first design error tuning session does
not yield the desired results. The model exploits loopholes in the system and is able to improves
the train loss on the cost of the validation loss, but it struggles to im both at the same time.
Figure 4.18 gives a rough overview of this dilemma.
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Figure 4.18: Comparison of total error and design error for tuning session A.

4.4.2 Session B: Freeze Model
The encountered problems from session A are tackled in session B by changing the approach and
using the pre-trained tuned model as a starting point. In order not to allow the model to adjust the
attribute reconstruction and create loopholes in the system, every sub-network that is involved in
computing x̂ is frozen by disabling the gradients of all contained parameters. Now, the loss function
contains the reconstruction of w, the gradient loss, the kl divergence and the design loss, while
the reconstruction of the attributes will remain constant. By introducing a new parameter freeze,
two different modifications of the freeze method are tested. x rec freezes the sub-networks that are
involved with x̂, while extended additionally freezes the decoder cnn, as shown in figure 4.19. In
case the model is still able to bypass the actual objective, a frozen decoder cnn will stabilize ŵ
and make it virtually impossible to trick the system.

Figure 4.19: Frozen model, with the option to freeze the decoder cnn.

session config B parameter search space set evaluation
method grid lambda d 1, 1e-2, 1e-4 2e-5 train loss 0.0069
epochs 15 freeze x rec, extended x rec val loss 0.0097
early stop 8/3 sleep 0 total error 0.0817
runs 6 transition 10 design error 0.0824

mixed error 0.1022

Table 4.17: Summary of design error tuning B.
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As detailed in table 4.17, three different values for lambda d are tested with this new method.
Figure A.12 (b) in the appendix details the separate runs of session B. The results suggest that the
approach works as intended, the model is improving the design error significantly without losing
performance in the reconstruction of panels or attributes. Apparently the model has always been
capable of learning the ability to generate panels given a requested condition, but there were more
efficient ways of improving the loss function. The issue was fundamentally a failure of expressing
our intentions in the loss function. Figure 4.20 demonstrates the effect of freezing the decoder cnn.
We can conclude that the efficiency of lowering the design error is improved if the optimizer is able
to backpropagate through the sub-network.

Figure 4.20: Significance of freeze parameter, where the dashed lines represent the total error.

4.4.3 Session C: Secondary KL Divergence

session config C parameter search space set evaluation
method grid lambda d 0.1, 0.01 0.01 train loss 0.0069
epochs 15 kl steps 0, 40 0 val loss 0.0106
early stop 15/5 lambda k 0.01, 0.001 0.001 total error 0.0875
runs 4 transition 5 design error 0.1307

sleep 0 mixed error 0.1202

Table 4.18: Summary of design error tuning C.

Finally it is time to test the secondary loss k, introduced in equation (3.19). The purpose of the
kl divergence is to regularize the latent space in order to eliminate blindspots and have a smooth
transition of generated panels. The benefit of the regularized latent space is not reflected in the
reconstruction loss, but it is an important part of the panel generation process. If the parameter
kl steps given in table 4.18 is set to zero, the primary loss k is employed. Otherwise, the parameter
enables the secondary loss and defines the number of steps that are included in the interval of x
values. The summary of the tuning runs are detailed in appendix figure A.12 (c). The results
show that the model has a slight preference for the primary loss k and a value for lambda k of 1e-3,
whereas the more conservative lambda d performs better. The significance of the value for kl steps
and lambda d is visualized in figure 4.20.
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Figure 4.21: Significance of kl steps (left) and lambda d (right) parameters.

4.4.4 Session D: Dropout for Design Error

session config C parameter search space set evaluation
method grid drop w 0.01, 0.1, 0.2, 0.5 0.2 train loss 0.0071
epochs 30 lambda d 0.02 val loss 0.083
early stop 5/3 transition 20 total error 0.0659
runs 4 sleep 0 design error 0.0799

sleep 0 mixed error 0.0859

Table 4.19: Summary of design error tuning D.

The new approach of freezing a large part of the encoder invites a re-thinking of the dropout
implementation. Since the sensitive x̂ reconstruction is no longer influenced by any dropouts, it is
reasonable to experiment with less conservative and more conventional dropout values. In this final
tuning session, only the drop w parameter is evaluated, since drop x does not have any influence
anymore. As before, the tuned model is loaded and all x rec layers frozen. Four runs are initialized
that each go over thirty epochs, to properly evaluate how the runs evolve over time. The overview
of this session is given in appendix figure A.12

Figure 4.22: Significance dropout parameter, evaluated on design error (left) and w error (right).

The runs perform quite similarly over the thirty epochs, except for dropout 0.5 as evident in
figure 4.22. Especially in terms of the w error there is a large discrepancy, even though the error
is constantly improving. However, looking at the trajectory it is a stretch to expect this run to
join the performance of the others. dropout 0.2 seems to be the most promising run, since it is
constantly improving, albeit marginally. With the conclusion of this evaluation, the stage is set
for the final model.
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4.5 Final Model

Model FFT Filt. FFT CNN Slicer
enc zffn norm True filters (0.015, 0.03) n bl. cnn fft 2 n slices 4
enc xffn norm False avg xffn True dim fft 40 dim slice 11
dec cnn norm False dec loss True slice xffn True
cnn block 21 slice zffn False
net design regular
z dim 128
Rec Loss Regulariz. Optimizer Design E.
lambda w 1 drop w 5e-3|0.25 optim Adam lambda d 0|0.05
lambda x 1|0 drop x 5e-3|0 lr 4e-4 sleep 0
lambda g 1e-2 weight d. w 1e-3 batch size 128 transition 0|50
log likelih. False weight d. x 1e-2 epochs 100|50 lambda k 1e-3
rel loss True kl steps 0

freeze -|x rec

Table 4.20: Parameter configuration of the final model.

The computation of the final model is conducted in two separate runs, with the first spanning
over 100 and the second over 50 epochs. The primary run prioritizes the panel and attribute
reconstruction. As for the secondary run, the encoders cnn, cnn fft and xffn layers are frozen and
lambda d is introduced. The objective is to minimize the design error without increasing the w
error. For the parameters in table 4.20 that have two different parameters for the two runs, they
are given as x1|x2. Lambda d is set equal to 0.05, which seems large at first glance. Considering
that the transition parameter is set to 50, lambda d is in fact equal for the first twenty epochs as
the runs conducted section 4.4.4. From there, it keeps increasing linearly until the conclusion of
the run. Since the model is saved at the best checkpoint at any given epoch, this setup enables to
experiment with higher values of lambda d, without risking a bad final performance. The drop w
parameter is set to 0.25, slightly increasing it compared to the best performing run of table 4.19,
in anticipation of training for a longer period. The components of the CVAE model in table 4.21
have not changed compared to the tuned model.

Network sub net input dim dim1 dim2 dim3 dim4
Encoder cnn (3, 200, 200) (24, 98, 98) (48, 47, 47) (96, 22, 22) (192, 9, 9)
12.8M par cnn fft (1, 40, 40) (8, 18, 18) (16, 7, 7)

slicer (1, 200, 200) (4, 11, 11)
zffn 15558 512 (2, 128)
xffn 6368 512 6

Decoder ffn 134 512 15552
9.2M par cnn (192, 9, 9) (96, 22, 22) (48, 47, 47) (24, 98, 98) (3, 200, 200)

Table 4.21: Components of the final CVAE model.
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4.5.1 Performance

evaluation epoch w error x error total error design error mixed error
run 1 | best 100/100 0.0261 0.0467 0.0727 0.1742 0.1157
run 2 | best 18/50 0.0286 0.0467 0.0753 0.0928 0.0985

Table 4.22: Metrics of final model.

There is a noticeable drop in performance for the errors in the final model. After some investigation,
it was discovered that during the design error tuning session, the loaded model was trained on a
different set of training and validation data. This falsely increased the performance on the new
validation set, since the pre-trained model had already seen some of it. The inaccuracy was fixed
for the final model, causing the drop of performance. The design error itself should be largely
unaffected, as it was not optimized in the loaded model. Nevertheless, there is a large drop in
performance of the design error which likely can be traced back to the decreased performance
in attribute reconstruction. This gives some intuition on the impact of an improved x error on
the design error, which seems to be considerate. Overall, the concept of training the final model
in two separate runs seems to have worked well. With the first run focusing on reconstruction
for 100 epochs, overfitting was successfully avoided despite low dropout rates. The second run
is initialized with the new set of parameters and most of the encoder layers frozen. After the
conclusion of the second run, the design error drops significantly. As a result, a final model with
efficient reconstruction losses and an average estimated design error of roughly 9% is realized.

Figure 4.23: Timeline of error progression of run 1 and 2.

Due to identical scales, figure 4.23 shows a nice transition between the first and the second run. The
design error in the second run starts to overfit at around epoch 15, which is another implication from
the inaccuracy described above. It seems like it would benefit from a larger dropout probability,
which stands in contradiction to the properties that w error shows in figure 4.22. It is not trivial to
simply increase the dropout for the design error and keep it constant for the w error computation,
since both relay on the same networks. Intuitively, increasing the dropouts for the decoder ffn
could improve the overfitting of the design error, but it seems like a classic trade-off situation,
where more research is needed before a conclusion can be reached.
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Reconstruction

Figure 4.24: Panel reconstruction and fft mean attribute errors.

Figure 4.25: Panel reconstruction and high res y attribute errors.

The reconstruction of panels in figure 4.24 and figure 4.25 has subjectively improved, the images
look smoother overall. The model still has problems with generating the high and low frequency
contents of the image, as seen in the boundary examples of figure 4.24 and figure 4.25. The
attribute reconstruction error of x̂ has clearly gotten more accurate. However, the most significant
improvement is realized with the estimated attribute error of x̂rec. With the exception of the
boundary panels, the estimated attributes of the reconstructed panels is accurate throughout the
two ranges. As displayed in figure A.8 of the appendix, this improvement translates to the other
attributes as well.

Figure 4.26: Final error distribution of fft mean and high res y attributes.

In figure 4.26 the differences are not as clearly to spot, even though the attribute reconstruction
has improved overall, as was seen table 4.22. Since there are only a small amount of samples at
the upper boundaries of the fft mean and high res y distributions, these large errors are viewed as
insignificant by the model. It prioritizes the errors in the highly represented data buckets, where
small changes have large impacts on the total loss. Thus, it is important to always be aware of the
underlying data distribution when evaluating these figures, as a minimal improvement in a well
represented area might weigh heavier than a large improvement at the boundary.
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Latent Space

Figure 4.27: Distribution of mu and sigma (left) and estimated latent space variables (right).

The summarized latent space distribution displayed in the left plot of figure 4.27 has remained
largely unchanged, which is to be expected as the kl loss has not been adjusted. It is worth noting
that on the right plot, the distributions of the separate latent space variables seem to have stabilized
in two sets of Gaussians. In one set, the distributions peak at a likelihood of approximately 0.4,
which is the trajectory of a standard normal Gaussian. The other set peaks at an approximate
likelihood of 0.3, which produces a slightly flatter distribution.

Design Error

The most important evaluation of the final model is the analysis of the design error. Figure 4.28
demonstrates a significant improvement over the base and tuned models in the royal category. The
design errors have flattened given that the scales have remained constant for a proper comparison.
The design error (10) is consistently below the 15% mark for the fft mean attribute, whereas the
design error (3/10) does not go over the 10% barrier. The model performs considerably worse for
the high res y attribute, but the design error (3/10) suggests that performance can be improved
by increasing the number of panels to generate. The results seem to be consistent, given the tight
0.25 and 0.75 confidence intervals.

Figure 4.28: Final design error of fft mean and high res y attributes.
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Testing

As a final examination of a machine learning model, it is traditionally evaluated on test data, which
has not been used to train the model, to adjust hyperparameters, by early-stopping algorithms
or to select the best performing checkpoints. The only connection the model has to this data is
that it originates from the same dataset and therefore was generated with the same processes.
Figure 4.29 shows that the model is fairly consistent with the performance of validation and test
data, meaning that the tuning procedure has not lead to an overfit of the validation data and thus
the generalization is not affected.

Figure 4.29: Final evaluation on test data.
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4.6 Case Study: Conditional Design Exploration
4.6.1 Setting
There are fundamentally only two things needed to initiate the acoustic panel generation process:
a trained decoder and a performance attribute request. The decoder is provided by simply loading
the final model from its best checkpoint. The performance request is not as trivial, since the
joint probability distribution of the performance attributes is unknown. Sampling from a standard
distribution like a Gaussian is problematic, since a high fft mean value stands in contradiction to
a low fft mean x value. Therefore, the performance attributes are randomly sampled from the test
data, to make sure the request is valid. The sampled requested performance attributes are:

fft mean x fft mean y fft mean panel height high res x high res y
0.0733 0.1278 0.0266 0.2834 0.7563 0.2479

Since generating panels is equivalent to a simple forward pass of the decoder, the computational
costs are insignificant. Therefore, generating a thousand panels is a good initial baseline that can
be adjusted depending on the users needs.

4.6.2 Generation and Analysis
The generated panels are modeled in a 3d environment as shown in figure 4.30, allowing the user
to explore the acoustic panel landscape and gather inspirations. The models are generated using
the mayavi library. Overall, the generated images translate into smooth structures, although
slightly more rough around the edges if compared to the panels from the dataset. For some design
instances there are inconsistency at the boundaries, but for the purposes of this thesis these are
mostly negligible.

Figure 4.30: Generated panel landscape.

The average relative estimated design error of the generated panels is 7.4%, slightly below the
expected relative error of 9.3%. Figure 4.31 gives an analysis of the generated panels and estimates
their performance. The red histogram represents the distribution of the training data for the given
attribute, the green histogram the distribution of the estimated attributes of the generated panels
and the blue line is the request. The generated attributes are fairly accurate, with their respective
distribution peaking at or close to the request. The lone exception is fft mean y, as not a single
panel is estimated to be in its direct vicinity. On the contrary, the fft mean x attributes are
estimated to be very accurate, as the distribution is peaking sharply right at the location of the
request.
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Figure 4.31: Attribute distribution of generated panels.

4.6.3 Selection

In order to get the most performance out of the generative model, a selection is made of the
three best performing panels. They are displayed in figure 4.32 along with the corresponding
performances attributes and the estimated design error. The attributes are are arranged as given
in the table. In summary, the design error (3/1000) of the requested attributes 0.032 or in relative
terms 3.2%, which is a very accurate result. However, there is an added average uncertainty of
approximately 5%, due to the x reconstruction error. Nevertheless, performance-wise the model
definitely passes the case study validation.

Figure 4.32: The three best panels and their respective estimated design errors.
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Lastly, the three selected panels are modeled in figure 4.33. Although they do have very similar
properties, the hills and valleys within the topologies are uniquely arranged. In all three cases, the
texture is very smooth and there are no visible inconsistencies at the boundaries.

Figure 4.33: The selected panels in a 3d environment.
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Discussion

5.1 Achievements and Applications
Over the course of the thesis, a lot of progress has been made and a good understanding of the
models dynamics has been developed. A significant amount of work went into the initial steps of
pre-processing a challenging dataset and instantiating a conditional variational autoencoder that
is able to learn from the data on a simple level. This laid the groundwork for the implementa-
tion of more advanced methodologies such as the fft filtering or the slicing of the panels. The
demanding reconstruction of the performance attributes invited an exploration of unconventional
approaches and creative thinking. These digressions have shown to consistently improve the overall
performance of the model, as was thoroughly documented in the tuning process. This is not to
say that all explorations have beared fruits, as for example the secondary kl divergence loss. The
proposed adjustment has not resulted in an improvement, but more research on this topic would
be interesting. The KL divergence, as it is implemented today, is very practical and successfully
regularized the latent space in this work, but it seems that there is potential for a more elegant and
optimization based formulation. There have been valuable findings along the design error explo-
ration that ultimately resulted in a model capable of solving the design problem, as demonstrated
in the case study. Although the texture of the generate panels is not perfectly smooth, it was never
the intention to create a model that produces final designs. It is definitely useful to explore various
possibilities given a set of requirements, if the designer is willing to accept an average estimated
design error of roughly 9%. This number can be significantly lowered by generating more panels
and selecting for them.

5.2 Hypothesis and Decoupling of Latent Space
The development of the model was guided by the hypothesis, that the given design problem is to
be solved by realizing a model that is able to successfully reconstruct the performance attributes
and the panel itself, while maintaining a regularized latent space. Although the design error did
show some improvements over the one-hundred epoch training session of the first run of the final
model, it is safe to say that the hypothesis did not hold. The design error figures A.6 of the tuned
model clearly demonstrate an indifference to the requested attributes. At the same time, figure A.5
shows that the majority of the estimated attributes x̂rec of reconstructed panels are similar to the
original attributes x, creating a counter-intuitive contrast. The first assumptions were that the
model is simply not accurate enough and that the reconstruction needs to be improved, but after
more reflection it was clear that there are other mechanics at work.
A latent space that is not decoupling from the performance attributes simply by concatenating the
conditionality, as initially assumed and proposed in literature, explains the observed behavior. For
other applications, a simple concatenation is sufficient to achieve a decoupled latent space, as the
conditionality provides additional value to the decoding of the latent vector. For the performance
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attributes in this thesis, it seems like the relation to the panels is too abstract for the model to
grasp by itself. It is noteworthy that the observed improvement of the design error in the first
training run indicates the start of a decoupling process. But it was slow and time-consuming,
therefore a new and efficient method was needed that encourages and accelerates the decoupling.
With the assumption that the attributes are part of the encoding in the latent space, the model is
able to reconstruct the panels without a need for the conditionality, since the distribution of the
latent vector for the reconstruction of a specific panel zi has much lower variance than a normal
Gaussian. Therefore, it is not encouraged to learn the propositions of the complex conditionality
since clearer information is available in the latent space. However, the latent space should not
suggest performance attributes in any form, rather the decoder ppppw|||x, zqqq should interpret the
latent vector z based on the given conditionality and adjust the generative behavior. In fact,
for each possible combination of attributes, a unique decoder ppppw|||zqqq is embedded within the
general decoder model ppppw|||x, zqqq. The tuned model seems to only have a single and constant
decoder ppppw|||zqqq. The role of the introduced design loss is to decouple the latent space from
the conditionality, by penalizing a decoder of the form ppppw|||zqqq. If a fft mean attribute of 0.1 is
requested, but the random sampling of the latent space suggests a panel with an estimated fft
mean mean value of 0.9 and the model is penalized for the difference, the decoder discovers the
underlying meaning of the conditionality rather quickly. Eventually, it is able to reorganize the
encoding and decoding of the latent space, removing all redundant information that is already
given, and decouples the latent space from the conditionality.

5.3 The Dilemma of the Design Error
From the beginning, it was clear that introducing a design error into the loss function can result
in unpredictable behavior. This was exactly what happened in the first session of the design error
tuning; the design loss was rapidly improving, while the validation x loss started to sky-rocket.
Closing the loopholes by freezing sub-networks stabilized the unpredictability and enabled the
realization of the final model. However, there are still uncertainties with the achieved results.
An interesting observation is that for some areas of figure A.9, the design error is lower than
its own measure of uncertainty, the attribute error displayed in figure 4.23. It is important to
be aware that even though this is an estimation of the true design error, the model treats this
as the absolute error. Considering that the model struggles to reconstruct the attributes of a
panel with the property of xfft_mean “ 1, it would not be beneficial to generate a hypothetically
perfect panel when xfft_mean “ 1 is requested, since it would automatically lead to a relatively
high error based on its own evaluation. Thus, because the model is intelligent, it exploits its own
weakness as it knows what properties its own analysis pipeline expects, which are not necessarily
in correspondence with xfft_mean “ 1. This is not to say that the model is not able to perform in
a practical application. Most likely it would perform even better if it were able to train on a true
design error, since the evaluation would be more coherent. But it means that the models perception
of reality is approximately 5% inaccurate, which makes the design error hard to interpret.

5.4 Outlook
There is no shortage of possibilities to build on this work or apply the concepts in a different setting.
The current model would benefit the most from an improvement of the x reconstruction, which is
a challenging endeavor. A significant amount of resources has been invested to get to this point,
but it remains the main source of uncertainty. Getting access to the true performance attribute
analysis process, in order to validate a small amount of generated panels, would already bring a
lot more clarity. Modeling the joint probability distribution of the performance attributes would
enable the user to under-define the conditionality, in order to generate more degrees of freedom for
a wider exploration of solutions. Also, it allows random sampling from the joint distribution and
remove the dependency from the dataset to generate panels with random conditionalities.
However, applying the concept on a new subject with critical importance on the visual aspects of
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the design instance would assumingly provide the most value. Acoustic panels are mainly judged
on their functionality and subjective aspects are secondary. Therefore, solution exploration has not
the highest priority in the design process. Even though a designer of acoustic panels undoubtedly
benefits from a generative model as described in this thesis, there is still more untapped potential
that can be realized with this concept.

5.5 Conclusion
The concept of reversing the parametric design process proposed by Salamanca et. al. [9] has
successfully been implemented for the subject of acoustic panel design. It required the embedding
of a cnn within the model architecture and introducing variationality into the system. These
architectural additions generalize the model in the presented paper and enable the concept to
be more inclusive with respect to potential applications. Throughout the course of the thesis,
relevant findings have been presented, such as the value of supplementary data representations,
an adaption to the classical VAE loss and opening a discourse about potential modifications to
the KL divergence. The analysis pipeline of the model has been developed and enabled a self-
evaluating feedback loop. A novel method to decouple the latent space of CVAE models has been
presented, that makes use of the feedback loop in form of a design error loss. The investigation
and eventual disproving of the initially posed hypothesis resulted in a better understanding of the
dynamics of latent spaces in CVAE models. Lastly, the final model and the intended use case of
design exploration is validated by guiding the reader through an application of design exploration
conditioned on requested performance attributes.
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Appendix A

Results

A.1 Models
A.1.1 Base Model
Reconstruction Error

Figure A.1: Error of panel and attribute reconstruction on validation data.
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Qualitative Reconstruction

(a) fft mean x

(b) fft mean y

(c) fft mean

(d) panel height

(e) high res x

(f) high res y

Figure A.2: Reconstruction of panel and performance attribute on validation data.
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Design Error

Figure A.3: Design errors of requested attribute on validation data.
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A.1.2 Tuned Model

Reconstruction Error

Figure A.4: Error of panel and attribute reconstruction on validation data.
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Qualitative Reconstruction

(a) fft mean x

(b) fft mean y

(c) fft mean

(d) panel height

(e) high res x

(f) high res y

Figure A.5: Reconstruction of panel and performance attribute on validation data.
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Design Error

Figure A.6: Design errors of requested attribute from validation data.
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A.1.3 Final Model

Reconstruction Error

Figure A.7: Error of panel and attribute reconstruction on validation data.
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Qualitative Reconstruction

(a) fft mean x

(b) fft mean y

(c) fft mean

(d) panel height

(e) high res x

(f) high res y

Figure A.8: Reconstruction of panel and performance attribute on validation data.
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Design Error

Figure A.9: Design errors of requested attribute from validation data.
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A.2 Hyperparameter Tuning

A.2.1 Tuning Set 1

(a) Batch norm

(b) Net design

(c) Slicer

(d) FFT filter
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A.2.2 Tuning Set 2

(a) FFT cnn

(b) Reconstruc-
tion loss

(c) Dropout &
weight decay

(d) Optimizer
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A.2.3 Design Error Tuning

(a) Introduce
lambda d

(b) Freeze sub-
networks

(c) Design and
kl loss

(d) Dropout

Figure A.12: Overview of design error tuning sessions.
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A.3 Datasets

A.3.1 Original Dataset

Attribute Density

Figure A.13: Density of performance attributes on original dataset.
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Panels

(a) fft mean x

(b) fft mean y

(c) fft mean

(d) panel height

(e) high res x

(f) high res y

Figure A.14: Range of original dataset for each attribute.
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A.3.2 Final Dataset

Attribute Density

Figure A.15: Density of performance attributes on final dataset.
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Panels

(a) fft mean x

(b) fft mean y

(c) fft mean

(d) panel height

(e) high res x

(f) high res y

Figure A.16: Range of final dataset for each attribute.
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A.4 Code Repository
The link to the code repository:
panels-cvae-repo

Please refer to the included README file for any further instructions.

https://limited.renku.ch/projects/sluis/panels-cvae
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