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Abstract

In the 15th century, sculptor and architect Filippo Brunelleschi developed an ingenious system that
was employed for the construction of the worlds largest masonry dome, the Santa Maria del Fiore in
Florence. The secret of its stability lies in the arrangement of its bricks, also called the double-helix
of masonry. In this thesis, a parametric model of a double helix masonry dome is developed and
the rigid body equilibrium computed, resulting in its distribution of internal normal and tangential
forces. A measure of infeasibility is introduced, enabling the analysis of infeasible structures by
quantifying and visualising tensile forces within the structure. Quadratic programming is used in
order to leverage and solve for the internal forces. The resulting force distribution is computed
and analyzed for three separate double-helix masonry dome structures with varying geometries.
Furthermore, for each of these structures a CAD model and a physical prototype is presented.
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Chapter 1

Introduction

Brunelleschi’s ingenious double-helix pattern, which was immortalized in the Santa Maria del Fiore
dome in Florence, is the main subject of this thesis and an analysis of its influence on the statics
of masonry domes is conducted. Paris et. al [6] have shown that one of the main characteristics of
the double-helix pattern, is that it allows to perform the construction of a dome without the use of
scaffolds or flying buttresses, as it is self-supporting at each step during construction. In this thesis
however, the focus is on the analysis of completed double-helix masonry dome structures. The main
goal is to develop a parametric model coded in python, enabling a detailed analysis of the internal
forces and statical properties of the computed dome structure. An extensive understanding of the
pattern’s influence on the transmission of forces is built up throughout the thesis.

1.1 Double-Helix Masonry Dome Analysis
In order to conduct this analysis, a structural model incorporating the internal forces acting on
each brick interface is needed. This objective is split into two separate parts - generating a dome
model and conducting a rigid body equilibrium. The rigid body equilibrium’s objective is to
minimize tension forces, as masonry bricks typically are assumed to have zero tensile strength
[7]. Introducing a measure of infeasibility to the problem formulation by relaxing the compression
constraint allows for the analysis of infeasible structures, i.e. structures that are subject to tensile
forces.

1.1.1 Dome Model
The first step of modeling a Brunelleschi dome is to develop a thorough mathematical understand-
ing of the double-helix pattern and how it adapts to parametric geometrical dome properties. With
this understanding, a methodology of how the double-helix is incorporated in a dome structure is
developed. Eventually, the code chronologically builds up the model by completing the following
steps:

• calculation of dome dimensions

• computation of double-helix pattern

• implementation of masonry bricks in structure

• computation of brick interfaces

After completion of the process detailed above, a double-helix dome model is constructed. In order
to decrease computational costs and to simplify the task, the dome’s symmetries are exploited.
One section of the dome is modeled and its symmetry is used to define the boundary constraints
of this section, which simulates a complete dome.
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2 1.2. Practical Applications

1.1.2 Rigid Body Equilibrium
The rigid body equilibrium, hereby referred to as RBE, computes the forces that are acting on
each interface between the bricks that are in contact. It determines the feasibility or infeasibility
of the given structure, which depends on the computed equality and inequality constraints. The
equality constraint matrix relates the interface forces and ensures every brick to be in equilibrium,
if feasible. External forces are introduced here as well, which are usually limited to the bricks self
weight. However, as we are modeling only one section of the dome, we do have additional external
forces stemming from the symmetric boundary constraints. The inequality or friction constraints
enforce the no-slip condition on each brick interface for feasibility. Depending on how the friction
constraints are formulated, the relaxed compression constraints allow for structurally infeasible
structures to be deemed feasible by the RBE. As mentioned earlier, this allows us to introduce a
measure of infeasiblity and analyse infeasible structures as well.

RBE Optimization

For a given feasible structure, there are a large number of solutions that all satisfy the linear
system of the RBE. In order to obtain the most realistic solution in terms of mechanical properties
of masonry domes, a quadratic optimization method is used to optimize the force equilibrium. The
objective function is formulated in a manner to highly penalize tension forces and to encourage
symmetric behaviour.

1.2 Practical Applications
In addition to the analytical part of the thesis, the developed code can be used as a tool to create
a custom double-helix masonry dome model by adjusting the input parameters and modes. The
output to the code consists of a wide range of structural and force distribution plots, information
on the dome’s feasibilty or infeasability and a quantifiable measure of its extent in case of the
latter. Additionally, csv files containing the dome’s internal force values and the coordinates of all
vertices for each brick of the structure are created. The coordinates csv file can be used to create
a CAD model and subsequently a 3D printed prototype of the dome. This output package allows
the user to gain a thorough understanding of the customized dome structure by highlighting its
structural weak points and its overall force distribution. With the gained knowledge, the structure
can be further tweaked by adjusting its parameters and once the dome fulfills the users needs, the
output can be used to produce a physical prototype.



Chapter 2

Background

Masonry domes have been a fascination to humankind for centuries, reaching its pinnacle in the
15th century in the form of the Santa Maria del Fiore in Florence. To this day, it is the worlds
largest standing masonry dome and is considered to be an engineering marvel [5]. The historical
relevance and the to this day unmatched efficiency of Brunelleschi’s masonry structure [6] invited
researchers to dig deeper on this topic. The subject of static analysis of general masonry structures
is a well researched field with a large number of practical applications.

2.1 Related Studies and Adopted Methods
Paris et. al [6] demonstrate how Brunelleschi’s double helix pattern permits an equilibrated state
throughout all stages of the domes construction. A Limit State Analysis approach was used to
study local and global equilibrium states of the dome. The results of this analysis were validated by
using discrete element modeling. Additionally, the discrete element modeling shows the existence
of plate-band resistance within the pattern, which is responsible for interlocking masonry bricks
and preventing sliding and overturning of the masonry dome during all construction stages.
The implementation process of the double helix pattern developed in this thesis is based on the
presented graphics in the paper of Paris et al. In this thesis however, a rigid body equilibrium
approach is used in order to determine stability, in contrast to the Limit State Analysis used by
Paris et. al, which is performed by the graphical editor algorithm Grasshopper for Rhino software.

Whiting et. al [7] introduce structural feasibility into the procedural modeling of buildings. It
allows for the analysis of infeasible structures and for more realistic structural models that can be
interacted with in physical simulations.
The concept of the measure of infeasiblity has been adopted in this semester thesis. Additionaly,
the conventions used for the RBE are based on the work of Whiting et. al.

Whiting et. al [8] present an approach where structural analysis is part of the design process. The
paper is focused on the study of how variations of geometry might improve structural stability. A
new measure of structural soundness for masonry buildings and cables is presented. The structures
closed-form derivative with respect to the displacement of all vertices describing its geometry is
derived, which is used for structural optimization.
The penalty formulation deployed by Whiting et. al for the RBE optimisation has inspired the
one used in this thesis.
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4 2.2. Research Gaps

Kao et. al [3] discuss and extend some main features of the RBE method. The contact between
blocks is considered to have finite friction capacity which is modeled through a penalty formulation.
The penalty formulation widens the standard admissible solution space of compressive-only forces
by allowing for tensile forces appearing on potentially unstable regions. A linear and a quadratic
objective function is proposed to illustrate the role being played by both the nodal forces and the
interface resultants.
The two different methods of enforcing the friction constraints that are introduced by Kao et. al,
the friciton-net approach and the friction+ approach, have been adopted in this thesis.

2.2 Research Gaps
Although masonry structures are widely covered in the literature and the Brunelleschi dome is
its most prominent example, a mathematical description of the double-helix pattern is missing.
The modeling process delivering the desired result according to the geometrical structure of the
dome was derived based on graphics and images of said pattern, which required an unexpected
and substantial amount of effort. Secondly, a significant part of the literature is focused on ver-
tically stacked masonry bricks, which do not inherit interfaces on the horizontal brick faces. The
papers that do stack bricks not only vertically but also horizontally, used simple examples in the
documentation typically in the form of pillars or arches. As a result, the literature did not provide
clarity on the handling of interfaces on horizontal brick faces.



Chapter 3

Methods

3.1 Overview

A dome structure must provide strength, stiffness and stability [2], in order to iternalise its self
weight and naturally occuring external loads. This thesis is only considering the self weight of each
brick as the lone external loading that is acting on the dome. Three main assumptions are made
for the analysis conducted in this thesis [2]:

1. sliding of the bricks can not occur; and

2. the masonry has no tensile strength; and

3. the masonry has infinite compressive strength.

Similar to an arch, a dome develops internal meridional forces that transfer loads to a support
structure at its base [4]. Additionally, domes are able to develop internal hoop forces that act in
latitudinal direction as parallel rings, as shown in figure 3.1.

Figure 3.1: Domes develop internal meridional and hoop forces [4]

The main objective of this thesis is to analyse how these forces are transferred throughout the
dome if we integrate the Brunelleschi pattern into its structure. The Brunelleschi or the double-
helix pattern, in its essence, is a simple modification to the stacking of the bricks. Along the
pattern, which is wrapped around the dome structure, the bricks are flipped vertically, as shown in
figure 3.2. Depending on the source, the pattern is also called double-loxodrome, but we will stick
with the term double-helix as a description for the Brunelleschi pattern in this thesis. In addition
to the study of the double-helix pattern, modifications to the domes geometry, e.g. the slope of its
curvature, and its influence on the internal force distribution of the structure are being analysed.

5



6 3.1. Overview

Figure 3.2: Double-helix pattern on an octagonal dome structure [6]

3.1.1 Definitions and Conventions

The double helix masonry dome consists of three different classes of bricks: regular bricks, pattern
bricks and fill-in bricks. While the regular brick and the pattern brick can be seen as the same
brick arranged in a different manner, the length of the fill-in brick is dynamic.

Table 3.1: Dimensions of brick classes.

Brick Class Width Length Height
Regular 2 4 1
Pattern 4 1 2
Fill-in 2 fill-in 1

The dimensions defined in table 3.1 get multiplied by a unit, which can be customised by the user.
For this thesis, in order to have realistic dimensions in terms of meter, it is set to

unit “ 0.1. (3.1)
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Figure 3.3: Normal forces.

The bricks are subject to normal and tangential forces. Those forces act on the side, upper and
bottom faces of the bricks, as those are the only contact faces for a dome structure. The normal
forces consist of compression and tension and are defined as shown in figure 3.3. The tangential
forces, on the other hand, are split in t1 and t2 forces and are defined as shown in figure 3.4.

Figure 3.4: Tangential forces.

3.1.2 Input
Modes

The code can be run in different modes that define the kind of structure that is to be modeled and
the type of output that is produced. These modes are summarized in table 3.2.

Table 3.2: Modes for model computation and output definition

Mode True False
dome full dome model section of dome model
fast reduced computation full output
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Parameters

In order to define the overall geometrical properties of the dome, a set of parameters needs to be
set by the user. The meaning and notation of those parameters is defined in table 3.3.

Table 3.3: Parameters that define geometrical properties of dome

Parameter Definition
stretch height/radius ratio of dome
n number of dome walls (e.g. n=6 -> hexagon)
r number of full rhombi in section (as shown in figure 3.5)
p number of pattern bricks for each side of initial rhombi (as shown in figure 3.5)
cut relative height cut-off of dome (e.g. cut=0 -> closed dome)

Figure 3.5: Visual description of the rhombi (r) and pattern width (p) parameters.

3.2 Dome Modeling

3.2.1 Dome Dimensions

After the input modes and parameters have been set, the dimensions of the dome can be calculated
by exploiting the geometrical properties of regular polygons. As a first step, we calculate the bottom
width of one dome section, which is equivalent to the sidelength of the regular polygon,

width “ p2pp` 1qqpr ` 1qunit, (3.2)

where p and r are described by table 3.3. The circumradius of the polygonial dome, which we
refer to simply as radius from here on out, is calculated by again using the geometrical properties
of regular polygons,

radius “
width

2sinpπ{2q . (3.3)

After calculating for these dome properties, the focus now shifts towards modeling the boundaries
for the main section of the dome. Three parameters a, b and c are introduced and are calculated
as follows,
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a “
width

2 cotanp
π

n
q, (3.4)

b “
width

2 , (3.5)

c “ radius ¨ stretch. (3.6)

These parameters are used to define the bounding box for the dome section as shown in figure 3.7.
Up until now, we assumed to have a closed dome and ignored the cut parameter. The actual height
of the dome is calculated as shown below,

height “ c ¨ cut. (3.7)

When constructing the dome section, the aim is to have a continuous curved wall on the inside and
a non-continous surface on the outside. The non-continuity stems from small gaps between the
bricks on consecutive levels, which are present due to the dome’s curvature and the fixed shape of
the bricks, as displayed in figure 3.6. While the bricks are touching on the inside wall, they diverge
vertically on the outside, as the curvature is slightly different for each level. For now, these gaps
can be ignored. However, to make sure that all bricks will be stacked correctly, geometrical values
are computed and saved in a dataframe, for each level of the section. Those values are:

• index “ l

• depthl or xl, where x0 “ a

• widthl or yl, where y0 “ b

• heightl or zl, where z0 “ 0

• inclinationregl
or γregl

• inclinationpatl
or γpatl

It is worth noting that the pattern bricks have a different inclination angle than regular bricks, as
they have different height dimensions. These differences are very subtle, but nevertheless important
to consider, in order to construct a smooth dome structure.

Figure 3.6: Sketch on how the new depth is calculated.

In order to calculate for the depth on each level, the last contact point between the bricks is used
as a starting point. From there, we use the height dimension of the regular brick, or dimrzsreg, as
a radius to produce a circle in the xy-plane, as shown in figure 3.6. The circle function is set equal
to the function of the curvature,
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fcirclepxlq “ zl´1 `
b

dimrzs2reg ´ pxl ´ xl´1q2 “ zl, (3.8)

fcurvaturepxlq “ b

c

1´
x2

l

a2 “ zl, (3.9)

fcirclepxlq “ fcurvaturepxlq. (3.10)

With some rearrangements, equation (3.10) results in a quartic function. It is easy to see that
there are two intersections, and therefore two real solutions to this equality equation, as shown in
figure 3.6. After solving for the two real solutions, the larger x value is eliminated, as that solution
corresponds to the lower contact point in relation to the z-axis. The remaining x value is the new
depthl. The other values with index l are computed as follows,

yl “ xl tanpπ
n
q, (3.11)

zl “ c

c

1´
y2

l

b2 , (3.12)

γregl
“ arctanpxl ´ xl´1

zl ´ zl´1
q. (3.13)

In order to compute γpatl
, the radius in figure 3.6 needs to be changed to dimrzspat, the height

dimension of the pattern bricks, and the equations 3.12 and 3.13 must be solved again. Once these
values have been computed and are saved to a dataframe, the boundaries of the dome section are
set and can be visualised in a plot, as shown in figure 3.7.

Figure 3.7: Boundaries of the dome section.

3.2.2 Double-Helix Pattern
Although the double-helix pattern seems rather simple when observing it on a straight wall, it
becomes more complicated on a dome strucure. As can be seen in figure 3.8, the shape and size
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of rhombi gradually change in relation to the decreasing width of the dome section. When the
pattern is further analysed, one can observe that the rhombi edges that are parallel to each other
contain the same amount of pattern bricks. If one starts at the bottom of the structure and works
oneself up, the number of pattern bricks get pushed through the structure and are adopted by the
corresponding rhombi, as illustrated in figure 3.8. Therefore, the number of pattern bricks for most
rhombi is defined by default. The only parameters that need to be defined, or in other words, the
only rhombi sides that do not have a set number of pattern bricks, are located on the boundary of
the structure and are highlighted in figure 3.8.

Figure 3.8: Flattened dome section with double-helix pattern [6], undefined rhombi sides high-
lighted on the right.

Wherever two rhombis are in contact, there are two horizontally stacked pattern bricks next to
each other, we call this a node. Another observation worth noting, is that the rhombi are always
closed at the boundary. In conclusion, the following rules need to be followed in order to construct
a double-helix pattern in a polygonial dome structure:

1. parallel rhombi edges contain the same amount of pattern bricks; and

2. all rhombi are closed on the boundary; and

3. rhombi nodes consist of two horizontally stacked pattern bricks.

Patternlines

In order to realise the concept detailed above, a new object is introduced that is called a patternline.
Patternlines are an abstraction of the double-helix pattern, that allow to split it in separate but
related objects and that exploit the symmetry of the double helix pattern. A patternline starts
at the bottom of the structure and moves in a zigzag path from node to node. It carries all of
the origins for the pattern bricks that will get computed in an ensuing step. For the structure
displayed in figure 3.8, there are a total of six patternlines. However, one only needs to compute
half of those as the dome section is symmetric. As discussed earlier, the only values that actually
need to be computed are the number of pattern bricks at the boundary. The simplified code below
details the iterative process to compute the undefined values of the patternlines:
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def getNumBricks(width, width_list, x_position, current_level):
# get num of pattern bricks for section of patternline that is undefined

# pattern bricks count
num_pattern_bricks = 0

# iterate until patternline is "out of bounds"
while x_position < width:

# move up one level, add one patternbrick and update all values
current_level += 1
num_pattern_bricks += 1
width = width_list[current_level]
x_position += unit

# missing value has been found
return num_pattern_bricks

The problem above could have been solved analytically as well, but the discrete nature of it invited
an iterative formulation and the computational cost of executing the function is negligible. The
results are identical either way. Once the missing parameter is computed, the patternline knows
when it needs to change direction and is fully defined. As a last step, all patternlines are mirrored
at the mid-axis of the dome section to complete the process, as displayed in figure 3.9.

Figure 3.9: Computed patternlines

3.2.3 Masonry Structure
After defining the dome’s dimensions and computing the double-helix pattern in the form of pat-
ternlines, one can start adding bricks to the structure. The bricks are defined by the following
values:
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• type

• center

• dimensions

• inclination angle

• list of brick faces

The brick faces are separate objects that are linked to the corresponding brick. They have their
own set of values that define them, namely:

• direction in relation to brick

• normal, t1 and t2 basis vectors

• center

• list of vertex coordinates

For each brick that is added to the structure, six faces are computed which in turn each compute
the four coordinates of their vertices. This will give the code the necessary tools to compute
interfaces and complete the RBE later on.

Pattern Bricks

As the center locations for the pattern bricks are already given by the patternlines, the step of
adding pattern bricks to the structure is a rather simple one. The result is displayed in figure 3.10.

Figure 3.10: Added pattern bricks to the structure
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Regular and Fill-in Bricks

In order to complete the structure with regular and fill-in bricks, each level is processed individually.
The purpose of the fill-in bricks, as the name suggests, is to fill the open holes that the regular
bricks can not fit in. The width of that hole is called the fill-in and is the missing variable to
complete the dimensions of the fill-in bricks. There is a minimum length constraint to prevent
the computation of razorthin masonry bricks. In those cases, a fill-in brick is computed that is
slightly larger than the regular brick in order to account for the gap. On each level, we have
multiple sequences to fill, which are flanked by the boundaries and divided by the pattern bricks.
A heuristic is used to fill the sequence with the correct number of regular bricks with an addition
of a fill-in brick if necessary, as detailed below in a simplified manner:

def fillSequence(sequence, dim_regular):

# initialise brick_list to add all bricks to
brick_list = []

# compute number of regular bricks and the excess space
num_regulars = int(sequence // dim_regular['y'])
excess_space = sequence % dim_regular['y']

# fringe case, excess_space to small
if 0 < excess_space < min_length:

# compute large fill_in brick to replace a regular brick
num_regulars −= 1
fill_in = excess_space + dim_regular['y']

# regular case
else:

fill_in = excess_space

# check if there is a need to compute a fill−in brick
if fill_in != 0:

# compute fill−in brick object and add to brick_list
reg_brick = FillInBrick(fill_in, ...)
brick_list.append(reg_brick)

# iterate over the number of num_regulars we can fit in sequence
for i in range(num_regulars):

# compute regular brick object and add to brick_list
reg_brick = RegularBrick(...)
brick_list.append(reg_brick)

# return brick_list that fills sequence
return brick_list

The whole procedure is complicated by the fact that the structure should not stack the bricks
identically on consecutive levels, there should always be some kind of offset. This can be reached
by adjusting the brick sequence in those cases, e.g. by flipping the fill-in brick to the end of the
sequence or by splitting a regular brick into two fill-in bricks. Once all sequences on all levels
have been filled, the boundaries and patternlines are removed and the dome section is complete,
as displayed in figure 3.11. Additionally, a ground brick is computed that can be regarded as a
single fill-in brick where the fill-in value is the total width of the dome section. It represents the
solid ground and allows the bricks on the first level to compute interfaces facing the floor, as there
are always two brick necessary to create an interface.
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Figure 3.11: Completed dome section

3.2.4 Brick Interfaces
The interface is the medium through which a force is transmitted from one brick to the next and
is a necessity in order to compute the RBE later on. If there is no interface on a bricks face, then
that face is not subject to any forces. Eventually, the only objects from the dome model that are
taken into account in order to compute the force distribution, are the brick interfaces.

Horizontal Interfaces

Up until now, we have ignored the small gaps between the bricks on consecutive levels. In reality,
those gaps would prevent the bricks to form any horizontal interfaces, as there is no contact surface
area. Typically, those gaps are filled with mortar in order to ensure a full contact area between
separate bricks. In this thesis, that problem is simplified by not only ignoring the gaps, but by
actively erasing their existence. The procedure to compute the horizontal interfaces goes as follows:

1. For each brick, the level above it is scanned for bricks that overlap vertically with the brick
in question.

2. For each pair of bricks that are overlapping vertically, a distinction is made; the lower brick
is defined as the main brick, the higher brick as the complementary brick.

3. The two contact faces, which are not actually in contact because of the gap between them,
are singled out.

4. A distinction is made between the two faces; the contact face of the main brick is defined as
the main face, the contact face of the complementary brick as the complementary face.

5. The complementary face is rotated onto the plane defined by the main face, where the rotation
axis is defined by the contact edge of the two faces in question.

6. The two faces are now in the same plane and the intersection surface between them is
computed.
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7. The horizontal interface of the two bricks in question is defined as the computed intersection
area, which is in the plane of the main face.

This simplification of the gap problem can also be interpreted in this way: the complementary
brick changes its shape in order to be perfectly in contact with the main brick, without actually
changing its shape. Although one needs to be aware of this abstraction of reality, it is not out
of proportion to apply this simplification on the dome model, due to the almost negligible small
volume of those gaps.

Figure 3.12: Horizontal interfaces, computed by artifically closing the vertical gaps.

Vertical Interfaces

As for the vertical interfaces, there is no gap problem due to the regular polygonial structure of
the dome model. However, there is a distinction on the interfaces computation made depending on
the dome mode parameter, which has been defined in table 3.2 and is elaborated on in table 3.4.

Table 3.4: Dome mode and boundary constraints

Dome mode Vertical interfaces Hoop forces
False Only compute vertical interfaces between bricks No
True Additionally compute vertical interfaces at the boundaries Yes

If the dome mode is set to False, the structure is a free standing dome section. Therefore, there
are no hoop forces present and no need to have interfaces on the boundary. On the other hand, if
the dome mode is set to True, hoop forces will be present and in order to get transmitted through
the structure, the model needs interfaces on the horizontal boundaries. The computation of the
vertical interfaces is identical to the procedure for the computation of the horizontal interfaces
detailed above, with a couple of exceptions:

1. For each brick, its own level is scanned for bricks that are in contact.
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2. As there is no gap present between the horizontally stacked bricks, there is no need to rotate
the contact faces.

Figure 3.13: Vertical interfaces of a dome section, no interfaces at the boundaries.

3.3 Rigid Body Equilibrium
3.3.1 Equality Constraints
The equality constraints of the RBE are a linear system of equations that enforce the force and
moment equilibrium for each brick. If no solution exists in which all bricks are in a equilibrium
state, the computation fails and the structure is deemed to be infeasible. The static equilibrium
of the enitre masonry brick structure can be generalised and formulated in matrix form:

Aeqf ` fext “ 0, (3.14)

where Aeq is the matrix of coefficients for the equilibrium equations [7]. It is defined as

Aeq “

»

—

—

–

A0,0 A0,1 . . .
...

. . .
An´1,0 An´1,n

fi

ffi

ffi

fl

, (3.15)

where Aj,k are submatrices that contain coefficients for net force and net torque contribution from
interface k acting on block j. Aj,k itself is defined as:

Aj,k “

»

—

—

—

—

—

—

–

akx
akx

. . .
aky

aky
. . .

akz akz . . .
bi,j,kx bi`1,j,kx . . .
bi,j,ky

bi`1,j,ky
. . .

bi,j,kz
bi`1,j,kz

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.16)

where
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akx “

¨

˚

˝

n̂kx

t̂1kx

t̂2kx

˛

‹

‚

, bi,j,kx “

¨

˚

˝

pn̂k ˆ v̂i,jqx

pt̂1k ˆ v̂i,jqx

pt̂2k ˆ v̂i,jqx

˛

‹

‚

. (3.17)

n̂kx
, t̂1kx

and t̂2kx
are the normal vector and friction basis vectors for interface k, as shown in

figure 3.14.

Figure 3.14: Indexing for the RBE [7]

Returning to equation (3.14), the f vector is defined as:

f “

¨

˚

˚

˝

f i

f i`1

...

˛

‹

‹

‚

, f i “

¨

˝

f i
n

f i
t1
f i

t2

˛

‚. (3.18)

It contains all the nodal forces of each interface contained in the masonry dome. Lastly, fext is a
vector containing all the external forces acting on the structure, which consist of the self weight of
the bricks and the hoop forces on the boundaries.

Implementation of Hoop Forces

If the dome mode input has been set to True, there are boundary conditions present due to the
symmetry of the dome structure. The net-normal force and tangential forces acting on a vertical
boundary interface are mirrored by the dome section that it is in contact with. From the perspective
of the modeled dome section, this can be expressed as an external load, compressing the section
from both boundaries. These external forces are called hoop forces and were briefly introduced
in figure 3.1. Those boundary conditions are simplified by ignoring the mirrored tangential forces
and only considering the net-normal force. As the dome has a polygonial shape, there is a certain
angle between the two contact sections, which affects the direction of the hoop force acting on the
interface. The resulting contribution of the hoop forces in relation to the interface forces is defined
as:

fhoop “ maxpcos 2π
n
, 0q (3.19)

Additionally, the sparse matrix Ahoop stores all interface forces that contribute to the hoop forces
and defines the direction of that force in relation to the brick interface. Finally, the external force
vector is defined as

fexternal “ fweight ` fhoop ¨Ahoopx, (3.20)

where Ahoop is a zero matrix if the dome mode has been set to False.
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3.3.2 Measure of Infeasibility
Whiting et. al [7] introduced a penalty formulation that has been adapted in this thesis. The
normal force component of the nodal force vector f is split into two separate parts:

f i
n “ ´f

i
n´ ` f

i
n`, (3.21)

f i
n´, f

i
n` ě 0, (3.22)

where f i´
n corresponds to compression and f i`

n corresponds to tension. Equation (3.18) is now
adjusted to:

f i “

¨

˚

˚

˝

f i
n´

f i
n`

f i
t1
f i

t2

˛

‹

‹

‚

(3.23)

Equation (3.17) is adjusted accordingly. The concept of equation (3.23) becomes clearer once we
introduce the inequality constraints and set the objective function. In essence, the concept allows
tension to be present while being penalized simultaneously, which creates a measure of infeasibility.

3.3.3 Inequality Constraints
In addition to the equality constraints, a friction constraint is applied at all vertices i of each
interface j, in order to take into account the sliding phenomena. At each vertice, the two in-
plane forces are constrained within the friction cone of the normal force. The resulting inequality
constraints can be generalized in matrix form as:

Afrf ď 0. (3.24)

Since we introduced a penalty information, there are two strategies that can be adopted to model
the friction constraint in equation (3.24), as pointed out by Kao et. al [3]. The first approach
constrains the tangential forces with compression only and is called friction+:

| f i
t1 |, | f

i
t2 |ď αf i

n´, (3.25)

where α denotes the static friction coefficient, typically set to 0.7 for masonry bricks. fn` is not
involved in the inequality constraint and therefore is a decoupled parameter. When inspecting
equation (3.25) closer, one can conclude the following two statements:

1. It is allowed to increase tension so that fn` ą fn´ and therefore fn ą 0 (see equation (3.22)),
i.e. the interface node in question is subject to tension.

2. One can increase fn` and fn´ equally in order not to modify the value of fn, while simul-
taneously relaxing the constraint detailed in equation (3.25). With this method, | f i

t1 | and
| f i

t2 | can be increased to any arbitrary value.

This means, that there are no infeasible solutions for the friction+ constraints. If we recall one of
the three main assumptions made at the beginning of this chapter - the masonry has no tensile
strength [2] - it becomes obvious that we have relaxed this assumption with the introduction of
the penalty formulation, coupled with the friction+ constraint. The second approach is called
friction-net [7] and is defined as follows:

| f i
t1 |, | f

i
t2 |ď αpf i

n´ ´ f
i
n`q. (3.26)

After further inspection, one can conclude that the statements made above regarding the friction+
constraints are not applicable to the friction-net approach, for the following reasons:
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1. According to equation (3.26) a new constraint is introduced: fn` ď fn´. Therefore, fn` ą

fn´ violates that constraint and is not feasible.

2. Increasing fn` and fn´ equally does not yield any modification in the friction-net constraint
(see equation (3.26)).

Adding tension to the structure has no relaxing effect on the friction-net constraints and, assum-
ing that a tension-only penalty is enforced during the RBE computation, it only increases the
objective, which is why tension will not be introduced for feasible structures. Surprisingly, under
the assumption made above, the friction-net approach reduces the problem back to its original
form and negates the measure of infeasibility formulation introduced in equation (3.22). On the
other hand, the friction+ constraint allows for an analysis of infeasible structures, while raising an
awareness of the infeasiblity and its magnitude, enabled by the measure of infeasibility. As both
methods have their pros and cons, a new mode is introduced that allows to switch between them
for different execution cycles of the code.

Table 3.5: Introduction of new friction mode

Mode True False
friction friction-net friction+

Table 3.5 will get added to the modes detailed in table 3.2. Initially, the code is always run with
the friction mode set to True. If the structure is deemed to be infeasible, the same structure is
re-computed with the friction mode set to False. This allows the user to always check feasibility
first and if the structure is deemed infeasible, the measure of infeasibility is applied. As detailed
in the following section, the friction+ method is not bulletproof when it comes to determining
feasibility, while the net-friction approach does not allow bricks to be subject to tension.

3.3.4 RBE as an Optimization Problem
In order to optimise the internal forces subject to the equality and inequality constraints detailed
above, the RBE is solved as an energy-minimisation problem, defined as follows:

minimize
x

fobjpxq “
1
2x

THx

subject to Aeqx` fext “ 0,
Afrx ď 0,
Ilbx ě 0,

where x is identical to f defined in equation (3.18), H is a penalty weighting matrix and Ilb

an identity matrix to set the lower bounds. A quadratic objective function was favored over a
linear formulation, as the results displayed a more balanced and symmetric force distribution. In
a quadratic formulation, the solver avoids isolated high forces in relation to the rest of the forces
and therefore it reduces outliers. H and Ilb from above are defined as:

H “

»

—

—

—

—

—

—

–

0.001 0 0 0 . . .
0 1 0 0
0 0 0.001 0
0 0 0 0.001
...

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Ilb “

»

—

—

—

—

—

—

–

1 0 0 0 . . .
0 1 0 0
0 0 0 0
0 0 0 0
...

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.27)

As can be observed in equation (3.27), H is penalising tension overproportionally while the other
forces are penalysed by a small margin. After testing different configurations, this setup turned out
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to deliver the most realistic results, as it focuses on minimizing tension while keeping the overall
force magnitudes low. However, there is one significant drawback - by penalising all forces, no
matter to which extent, the objective value can not be considered a true measure of infeasibility.
Even for feasible structures, the objective function will not be zero, as zero is not attainable.
This drawback has been softened by setting the penalty for non-tension forces to 0.001, but it is
still present to some degree. As a workaround, the objective function is no longer viewed as the
measure of infeasibility. Its only purpose is to optimize the problem formulation. A new function
is introduced, fMoI , that replaces the objective function as the measure of infeasibility:

fMoIpxq “ Σn
j“0Σ4

i“0x
i
n`,j (3.28)

This solution encorporates the best of both worlds, an objective function delivering realistic results,
while still being able to measure the infeasibility truthfully. As for Ilb in equation (3.27), it enforces
the strictly positive constraint introduced in equation (3.22) for the compression and tension forces,
while the tangential forces remain unconstrained.

Quadratic Programming

As the optimization problem is formulated as an energy-minimisation problem, quadratic program-
ming is used to find the optimal solution. More precisely, the python-embedded modeling language
CVXPY [1] is employed, using the incorporated OSQP solver to conduct the computation.

3.3.5 RBE Visualization

After an optimal solution to the optimization problem has been found, the nodal forces for all
interfaces are known. In order to make the result more illustrative and interpretable, the nodal
forces are aggregated on each interface and visualised in a customized color spectrum. The output
of the code consists of six different force plots, each displaying a certain force type, defined as
follows:

compressionj “ Σ4
i“0f

i
n´,j (3.29)

tensionj “ Σ4
i“0f

i
n`,j (3.30)

normalj “ Σ4
i“0f

i
n`,j ´ f

i
n´,j (3.31)

t1,j “ Σ4
i“0f

i
t1,j (3.32)

t2,j “ Σ4
i“0f

i
t2,j (3.33)

frictionj “

b

Σ4
i“0f

i
t2,j

2
` Σ4

i“0f
i
t2,j (3.34)

3.3.6 RBE Validation

In order to validate the RBE computation and make sure the results are realistic, two different
tests have been performed. The common feature of the tests is that the result expectation is very
clearly defined by a simplistic test setting. Therefore, unrealistic results are obvious and the error
source is identified with relatively small effort.



22 3.3. Rigid Body Equilibrium

Straight Wall Test

Figure 3.15: Straght wall structure

A third mode in which the code can be run in apart from the binary dome mode parameter defined
in table 3.2 has been implemented. The structure for this third mode is a straight wall. As its
only purpose is the validation of the code, it has not been introduced as a general input parameter.
When bricks are stacked horizontally without any inclination angle or pattern bricks, the results
must have the following characteristics in order to pass the straight wall test:

1. The bricks are subject to compression with zero or negligible tension and tangential forces.

2. The compression gradually increases from the highest level to the lowest level.

Friction Test

As the straight wall test focused on a more primitive validation of the RBE, where the tangential
forces were not part of the validation other than being zero or negligible in the results. In order to
test the mechanics of the friction forces, a dome section with an significant overhang is chosen in this
setup which is expected to lead to infeasiblity. Note that the RBE subject to friction+ constraints
does not classify the problem as infeasible, but rather as a feasible problem with a structure that
is subject to tension and therefore it has a non-zero measure of infeasbility. Primarily, the friction
test should reflect this infeasibility in the results, but this is not the actual objective of this test
setting. The idea is to compare the measure of infeasibility of identical and infeasible structures
that are computed with a varying friction parameter. Tests with the following friction parameters
are being conducted:

Table 3.6: Friction parameters to be tested and the expected results.

Friction Expectation
0.7 Non-zero measure of infeasiblity
0.3 Highest measure of infeasiblity
1.5 Lowest measure of infeasiblity

The following results are expected from the MoI test:

1. The structure with the regular friction parameter of 0.7 is infeasible.

2. A negative correlation between the friction parameter and the MoI is observed.
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Combining those two statements, we can also expect the structure that is computed with the
friction parameter of 0.3 to be infeasible.

3.4 Output
For some structures, the execution of the dome modeling and RBE computation has taken up to
several minutes. Note that the computation time is highly dependent on the computation power of
the machine it is run on, therefore this is not a quantitive measure of the overall computational cost
when running the code. Nevertheless, it became clear that the results should be saved whenever
the code has been executed, in order to minimise unnecessary computation. Therefore, a folder
structure has been implenented that stores the output of previous code executions in a methodical
manner. The overall folder structure is detailed below:

/
structure id

00 parameters.txt
01 angle

01 pattern bricks.png
02 brick structure.png
03 brick interfaces.png

02 front
. . .

03 top
. . .

04 side
. . .

RBE
00 objective.txt
01 angle

00 compression.png
01 tension.png
02 normal.png
03 t1.png
04 t2.png
05 friction.png

02 front
. . .

03 top
. . .

04 side
. . .

locations.csv

strucure id is the main folder of the output. Its name is a combination of the input modes and
parameters, which ensures that the folder is only overwritten if a structure with the same input is
re-computed. 00 parameters.txt details all the input parameters in a more readable manner. 01
angle, 02 front, 03 top and 04 side on the main folder level include structural plots of different stages
in the dome modeling process. The model has been plotted from different view angles and the
plots are saved in the corresponding folders. The RBE subfolder contains all files that are related
to the optimization problem and its solution vector, as the name is suggesting. 00 objective.txt
summarizes the result from the quadratic programming, including the following metrics:
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1. feasibility

2. friction constraint method used

3. value of objective function

4. measure of infeasibility

As earlier, the four folders from different view angles are included within the RBE subfolder, this
time including various force plots of the structure. The last file of the output is the locations.csv
file, which contains the coordinates for all six vertices of each brick. If the fast mode has been set
to True, which was defined in table 3.2, the output is reduced to only plotting the structure and
force plots from one angle with a decreased resolution. Those adaptions reduce the computation
time significantly, with its extent also being dependent on the other input parameters.

3.4.1 CAD Models
The dome model encorporates all the necessary information to create a 3D model in a CAD en-
vironment. As noted above, the locations.csv file contains all vertex coordinates of each brick of
the structure. This file can be used to import the bricks as separate objects into a CAD environ-
ment. As the bricks are only touching on one edge and the model does not include any mortar,
the CAD environment is not able to create a main body without any additional modifications.
Therefore, all coordinates in the locations.csv file are subject to an offset of one unit, which was
defined in equation (3.1). The direction of the offset is defined by their normal vector which points
inward relative to the structure. This allows the CAD model to create a main body, as the bricks
are slightly overlapping in certain areas. The results are presented with the CAD Models of the
following three structures:

structure main characteristic stretch n r p cut

1 spherical dome 1 8 1 10 0.1
2 stretched dome 2 6 1 8 0.05
3 compressed dome 0.8 4 1 13 0.01

Figure 3.16: Structure 1 in a Rhino environment
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Figure 3.17: Structure 2 (left) and structure 3 in a Rhino environment

3.4.2 Physical Prototypes
In an ensuing step, the dome model can get exported again from the CAD environment in a stl file
format. 3D printed, physical prototypes can be created from those files. For the three structures
introduced earlier, physical prototypes were created and are presented in figure 3.18.

Figure 3.18: Physical prototypes of the stretched, spherical and compressed dome, from left to
right.
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Results

The result of the RBE computation of the three structures introduced in section 3.4.1 are being
presented in this chapter, in two separate configurations: as a free standing dome section and as
a full dome. For all infeasible structures, the RBE was computed with the friction+ method. The
structures in section 3.4.1 have been adjusted as follows:

Table 4.1: Input modes and parameters for the different structures

structure dome mode net-friction stretch n r p cut

1.1 False False 1 8 1 10 0.1
2.1 False False 2 6 1 8 0.05
3.1 False False 0.8 4 1 13 0.01
1.2 True True 1 8 1 10 0.1
2.2 True True 2 6 1 8 0.05
3.2 True True 0.8 4 1 13 0.01

The results consist of a table that displays some key metrics of the structure and the completed
RBE computation, that include: feasibility, objective function value, MoI, weight of structure (in
kg) and the MoI factor, which is defined as:

MoIfactor “
MoI

weight
(4.1)

The MoI factor allows a comparison between structures that do not share the same geometries
and number of bricks, as the MoI can be misleading for some configurations. In addition to the
metrics listed above, the most relevant force plots are displayed. A full overview of the force
plots is documented in the Appendix 1. Note that the following results have all been plotted with
individual color spectra, in order to present the force distributions as clear as possible. However,
the colors can be misleading if the assigned values next to the color spectra are overlooked. Make
sure to consider the numerical values before interpreting the results.

26
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4.1 RBE Validation Results

4.1.1 Straight Wall Test Results

Table 4.2: RBE results of straight wall test

feasible obj. function value MoI weight MoI factor

Yes 41.7 ¨ 103 „ 0 12.5 ¨ 103 0

Figure 4.1: Force plots of compression (top), tension (left) and friction (right) for the straight wall
test.



28 4.1. RBE Validation Results

4.1.2 Friction Test Results

Table 4.3: Results of friction test conducted with structure 1.1

friction par. feasible obj. function value MoI weight MoI factor

0.3 No 190.8 ¨ 106 806.6 ¨ 103 102.6 ¨ 103 7.86
0.7 No 22.8 ¨ 106 216.3 ¨ 103 102.6 ¨ 103 2.11
1.5 No 3.9 ¨ 106 7.1 ¨ 103 102.6 ¨ 103 0.07

Figure 4.2: Tension plots of structure 1.1 computed with friction parameter 0.3 (top), 0.7 (left)
and 1.5 (right).
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4.2 RBE Results

4.2.1 Structure 1.1: Spherical Dome Section

Table 4.4: RBE results of structure 1.1

structure feasible obj. function value MoI weight MoI factor

1.1 No 22.8 ¨ 106 216.3 ¨ 103 102.6 ¨ 103 2.11

Figure 4.3: Force plots of compression (top), tension (left) and friction (right) for structure 1.1
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4.2.2 Structure 2.1: Stretched Dome Section

Table 4.5: RBE results of structure 2.2

structure feasible obj. function value MoI weight MoI factor

2.1 Yes 0.3 ¨ 106 15.9 ¨ 103 102.9 ¨ 103 0.155

Figure 4.4: Force plots of compression (top), tension (left) and friction (right) for structure 2.1
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4.2.3 Structure 3.1: Compressed Dome Section

Table 4.6: RBE results of structure 2.2

structure feasible obj. function value MoI weight MoI factor

2.1 Yes 0.3 ¨ 106 139.9 ¨ 103 77.9 ¨ 103 1.795

Figure 4.5: Force plots of compression (top), tension (left) and friction (right) for structure 3.1
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4.2.4 Structure 1.2: Spherical Dome

Table 4.7: RBE results of structure 1.3

structure feasible obj. function value MoI weight MoI factor

1.2 Yes 0.5 ¨ 106 „ 0 102.6 ¨ 103 0

Figure 4.6: Force plots of compression (top), tension (left) and friction (right) for structure 1.2
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4.2.5 Structure 2.2: Stretched Dome

Table 4.8: RBE results of structure 2.2

structure feasible obj. function value MoI weight MoI factor

2.2 Yes 0.3 ¨ 106 „ 0 102.9 ¨ 103 0

Figure 4.7: Force plots of compression (top), tension (left) and friction (right) for structure 2.2
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4.2.6 Structure 3.2: Compressed Dome

Table 4.9: RBE results of structure 2.2

structure feasible obj. function value MoI weight MoI factor

3 Yes 0.3 ¨ 106 „ 0 77.9 ¨ 103 0

Figure 4.8: Force plots of compression (top), tension (left) and friction (right) for structure 3.2
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4.2.7 Full Dome Plots

Figure 4.9: Full dome plots for all three structures.
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Discussion

5.1 RBE Verification

5.1.1 Straight Wall Test
Figure 4.1 shows that the meridional compression forces flowing through the horizontal interfaces
gradually increase. They increase significantly at the lowest level which can be explained by the
large ground floor interface. Tension and friction forces are negligible, as expected. Therefore, the
conditions that were defined in section 3.3.6 for the straight wall test have been satisfied. The
RBE for straight wall structure seems to be computed correctly.

5.1.2 MoI Test
As the expectation stated in section 3.3.6, the free standing dome section with friction coefficient
0.7 is deemed infeasible. TheMoI of the structure that has been computed with friction coefficient
1.5 has decreased drastically, however this result has no physical implications, as friction coefficients
above 1 are generally rare. As for the results computed with coefficient 0.3, one can observe a large
increase in tensile forces. This does not seem obvious at first glance, but the assigned values to the
color spectrum provide some needed context. Overall, a negative correlation between the friction
coefficient and the MoI is clearly shown. Therefore, the conditions for the MoI test detailed in
section 3.3.6 have been satisfied and the RBE computation delivers the expected results.

5.2 Boundary Conditions
The main takeaway here is that the addition of boundary conditions results in feasibility for all
three structures. It seems that the boundary interfaces themselves are the crucial part, as the hoop
forces decrease with the number of walls n, if one recalls equation (3.19). As a matter of fact, the
hoop forces disappear completely for structure 3.2, displayed in figure 4.8, as the four walls are
aligned at right angles. This is evidenced by a decrease in compression for the boundary interfaces
from structure 1.2 (4.6) to 3.2 (4.8). Nevertheless, all dome structures are feasible, suggesting
that the boundary interfaces play the pivotal role in ensuring an equilibrated state. The boundary
conditions have an effect on the meridional forces as well, which are transmitted by the horizontal
interfaces. Without any boundary conditions, the largest meridional forces are located at the
bottom corners of the dome sections, e.g. structure 1.1 shown in figure 4.3, functioning as an
anchor for the structure. With the addition of boundary conditions, this is no longer necessary as
the boundaries are now supported and as a result, the highest compression forces are located at
the bottom center of the dome structures, e.g. structure 1.2 shown in figure 4.6. In essence, the
boundary conditions redirect the meridional force transmissions and stabilise the structure.

36
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5.3 Double-Helix Pattern
For the dome section plots, e.g. figure 4.3 of structure 1.1, one can observe that the meridional
forces are of higher magnitude for interfaces within the rhombi compared to interfaces produced by
the pattern bricks. This suggests that the double-helix pattern does not transmit meridional forces
through the structure. Inspecting the vertical interfaces in 4.6 however, one can clearly observe
that the axial forces are mainly transmitted by the double-helix pattern. This effect is expected
to increase for the full dome structures with a double-helix pattern that is not interrupted. This
expectation does not come to fruition for all structures. In structure 1.2 shown in 4.6, the hoop
forces overshadow the influence of the double-helix pattern. With decreasing hoop forces through
structures 2.2 and 3.2, the transmission of the axial forces through the double-helix pattern can be
observed more clearly, as evidenced by 4.7 and 4.8. This indicates that the boundary conditions, or
more precisely the hoop forces, might not be formulated accurately enough. As for the tensile forces
in the infeasible dome section structures, e.g. figure 4.3 of structure 1.1, the infeasibility seems to
be focused around the double-helix pattern, suggesting that it is the weak link. Considering that
the double-helix pattern is designed for dome structures and not free standing, overhanging walls,
this observation is not surprising.

5.4 Geometric Variation
One can observe that the meridional force anchors of the dome sections mentioned in section 5.2
are influenced by the stretch factor of the structure. In figure 4.4 of structure 2.1, the meridional
forces are not concentrated at the boundaries and distributed more homogeniously throughout the
ground floor interfaces, as the lower part of the structure is resemblant of a straight wall. For
structure 3.1 displayed in figure 4.5, the opposite is true. There is a large difference of magnitude
for the meridional forces between the ground floor interfaces at the boundaries and the ones located
in the center. As for the MoI factor, intuitively one would expect a negative correlation with the
stretch factor for dome section structures. However, we can see that the MoI factor of structure
3.1 detailed in table 4.6 is slightly lower than the MoI factor of structure 1.1 shown in table 4.4.
This can be explained by the decrease of the number of bricks in the infeasible region of structure
3.1. In structure 1.1, there are more bricks in the infeasible region that contribute to the MoI
and the MoI factor does not account for this discrepancy. As we can see, the MoI factor does
not tell the whole story in terms of infeasibility. The MoI factor of structure 2.1 detailed in
table 4.5 behaves as expected, as most of the structure is in the feasible region and lowers theMoI
factor. Generally, one can observe similar features in the force plots of all three dome variations,
adjusted or scaled according to their shape. One example would be the friction forces that are
mostly concentrated at the boundaries for all dome structures, which can be observed in figure 4.9.
Overall, the double-helix pattern seems to have a similar impact on the force distribution for all
three input variations and their resulting structures.

5.5 Limitations
As discussed in section 5.2, the hoop forces might not be as accurate as initially thought. It would
have been interesting to validate the boundary conditions by computing a small but complete dome
model and compare it to the dome section with boundary conditions. However, this was not in
scope for the semester thesis. Another limitation is the inability to measure how stable the feasible
structures are. The MoI is only applicable to infeasible structures, as the name suggests.

5.6 Future Work
As mentioned above, verifying boundary conditions would be a valuable addition to this thesis. A
further extension would be the implementation of a measure of feasibility, determined by applying
different external loading scenarios. This would allow a quantitative comparison of feasible domes.
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Modeling a dome with radial geometry would create a smooth double-helix pattern, not displaying
any edges at the separate section boundaries, which could have an interesting influence on the
effectiveness of the double-helix pattern. Optimising the pattern itself based on certain criterias
would be an intriguing field to explore.



Chapter 6

Conclusion

At the beginning, it was not entirely clear where this subject would lead. The initial focus was on
creating an in-depth study of the double-helix pattern and gain valuable insights on its influence on
the transmission of forces. During the course of this thesis, it turned out that the parametric model
of the masonry dome, which was initially meant simply as an instrument in order to conduct the
RBE computation, had value in itself. Apart from the analytical element of the thesis, it became
important to create a tool allowing to easily recreate the study and experiment with new structures.
This allows future research on the subject to build upon this study efficiently. Over the course of
this thesis, this goal has been achieved without losing sight of the initial objective of acquiring an
in-depth understanding of the mechanical properties of the Brunelleschi dome.
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Figure A.1: Structure 1.1 Force Plots
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Figure A.2: Structure 1.2 Force Plots
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Figure A.3: Structure 2.1 Force Plots
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Figure A.4: Structure 2.2 Force Plots
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Figure A.5: Structure 3.1 Force Plots
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Figure A.6: Structure 3.2 Force Plots
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